ﻻ يوجد ملخص باللغة العربية
We report $^{31}$P NMR measurements under various magnetic fields up to 7 T for the intermediate valence compound EuNi$_2$P$_2$, which shows heavy electronic states at low temperatures. In the high-temperature region above 40 K, the Knight shift followed the Curie--Weiss law reflecting localized $4f$ states. In addition, the behavior corresponding to the temperature variation of the average valence of Eu was observed in the nuclear spin-lattice relaxation rate $1/T_1$. With the occurrence of the Kondo effect, $1/T_1$ was clearly reduced below 40 K, and the Knight shift becomes almost constant at low temperatures. From these results, the formation of heavy quasiparticles by the hybridization of Eu $4f$ electrons and conduction electrons was clarified from microscopic viewpoints. Furthermore, a characteristic spin fluctuation was observed at low temperatures, which would be associated with valence fluctuations caused by the intermediate valence state of EuNi$_2$P$_2$.
Detailed ${}^{31}$P nuclear magnetic resonance (NMR) measurements are presented on well-characterized single crystals of antiferromagnetic van der Waals Ni$_2$P$_2$S$_6$. An anomalous breakdown is observed in the proportionality of the NMR shift $K$
We present experimental results of electrical resistivity, Hall coefficient, magnetic susceptibility, and specific heat for single crystals of Ce-based intervalent compound CeNiSi$_2$. The results show similar behaviors observed in Yb-based intervale
Yb$_2$Si$_2$Al may be a prototype for exploring different aspects of the Shastry-Sutherland lattice, formed by planes of orthogonally coupled Yb ions. Measurements of the magnetic susceptibility find incoherently fluctuating Yb$^{3+}$ moments coexist
We present evidence for nuclear spin-lattice relaxation driven by glassy nematic fluctuations in isovalent P-doped BaFe$_2$As$_2$ single crystals. Both the $^{75}$As and $^{31}$P sites exhibit stretched-exponential relaxation similar to the electron-
We present results from point-contact spectroscopy of the antiferromagnetic heavy-fermion superconductor UPd$_2$Al$_3$: conductance spectra are taken from single crystals with two major surface orientations as a function of temperature and magnetic f