ترغب بنشر مسار تعليمي؟ اضغط هنا

A Cayley-type identity for trees

195   0   0.0 ( 0 )
 نشر من قبل Ran J. Tessler
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Ran J. Tessler




اسأل ChatGPT حول البحث

We prove a weighted generalization of the formula for the number of plane vertex-labeled trees.



قيم البحث

اقرأ أيضاً

In this paper we study finite groups which have Cayley isomorphism property with respect to Cayley maps, CIM-groups for a brief. We show that the structure of the CIM-groups is very restricted. It is described in Theorem~ref{111015a} where a short li st of possible candidates for CIM-groups is given. Theorem~ref{111015c} provides concrete examples of infinite series of CIM-groups.
A compound determinant identity for minors of rectangular matrices is established. As an application, we derive Vandermonde type determinant formulae for classical group characters.
We show that every connected $k$-chromatic graph contains at least $k^{k-2}$ spanning trees.
Let $mathcal{O}_n$ be the set of ordered labeled trees on ${0,...,n}$. A maximal decreasing subtree of an ordered labeled tree is defined by the maximal ordered subtree from the root with all edges being decreasing. In this paper, we study a new refi nement $mathcal{O}_{n,k}$ of $mathcal{O}_n$, which is the set of ordered labeled trees whose maximal decreasing subtree has $k+1$ vertices.
110 - Yasuhide Numata 2016
We consider pairs of a set-valued column-strict tableau and a reverse plane partition of the same shape. We introduce algortithms for them, which implies a bijective proof for the finite sum Cauchy identity for Grothendieck polynomials and dual Grothendieck polynomials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا