ترغب بنشر مسار تعليمي؟ اضغط هنا

Linking numbers in local quantum field theory

70   0   0.0 ( 0 )
 نشر من قبل Detlev Buchholz
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Linking numbers appear in local quantum field theory in the presence of tensor fields, which are closed two-forms on Minkowski space. Given any pair of such fields, it is shown that the commutator of the corresponding intrinsic (gauge invariant) vector potentials, integrated about spacelike separated, spatial loops, are elements of the center of the algebra of all local fields. Moreover, these commutators are proportional to the linking numbers of the underlying loops. If the commutators are different from zero, the underlying two-forms are not exact (there do not exist local vector potentials for them). The theory then necessarily contains massless particles. A prominent example of this kind, due to J.E. Roberts, is given by the free electromagnetic field and its Hodge dual. Further examples with more complex mass spectrum are presented in this article.



قيم البحث

اقرأ أيضاً

The Riemann hypothesis states that all nontrivial zeros of the zeta function lie in the critical line $Re(s)=1/2$. Hilbert and Polya suggested that one possible way to prove the Riemann hypothesis is to interpret the nontrivial zeros in the light of spectral theory. Following this approach, we discuss a necessary condition that such a sequence of numbers should obey in order to be associated with the spectrum of a linear differential operator of a system with countably infinite number of degrees of freedom described by quantum field theory. The sequence of nontrivial zeros is zeta regularizable. Then, functional integrals associated with hypothetical systems described by self-adjoint operators whose spectra is given by this sequence can be constructed. However, if one considers the same situation with primes numbers, the associated functional integral cannot be constructed, due to the fact that the sequence of prime numbers is not zeta regularizable. Finally, we extend this result to sequences whose asymptotic distributions are not far away from the asymptotic distribution of prime numbers.
128 - Pavel Mnev 2017
Lecture notes for the course Batalin-Vilkovisky formalism and applications in topological quantum field theory given at the University of Notre Dame in the Fall 2016 for a mathematical audience. In these lectures we give a slow introduction to the pe rturbative path integral for gauge theories in Batalin-Vilkovisky formalism and the associated mathematical concepts.
We derive new all-purpose methods that involve the Dirac Delta distribution. Some of the new methods use derivatives in the argument of the Dirac Delta. We highlight potential avenues for applications to quantum field theory and we also exhibit a con nection to the problem of blurring/deblurring in signal processing. We find that blurring, which can be thought of as a result of multi-path evolution, is, in Euclidean quantum field theory without spontaneous symmetry breaking, the strong coupling dual of the usual small coupling expansion in terms of the sum over Feynman graphs.
65 - G. Sardanashvily 2015
The GNS representation construction is considered in a general case of topological involutive algebras of quantum systems, including quantum fields, and inequivalent state spaces of these systems are characterized. We aim to show that, from the physi cal viewpoint, they can be treated as classical fields by analogy with a Higgs vacuum field.
We provide a rigorous lattice approximation of conformal field theories given in terms of lattice fermions in 1+1-dimensions, focussing on free fermion models and Wess-Zumino-Witten models. To this end, we utilize a recently introduced operator-algeb raic framework for Wilson-Kadanoff renormalization. In this setting, we prove the convergence of the approximation of the Virasoro generators by the Koo-Saleur formula. From this, we deduce the convergence of lattice approximations of conformal correlation functions to their continuum limit. In addition, we show how these results lead to explicit error estimates pertaining to the quantum simulation of conformal field theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا