ﻻ يوجد ملخص باللغة العربية
In this paper we propose a different (and equivalent) norm on $S^{2} ({mathbb{D}})$ which consists of functions whose derivatives are in the Hardy space of unit disk. The reproducing kernel of $S^{2}({mathbb{D}})$ in this norm admits an explicit form, and it is a complete Nevanlinna-Pick kernel. Furthermore, there is a surprising connection of this norm with $3$ -isometries. We then study composition and multiplication operators on this space. Specifically, we obtain an upper bound for the norm of $C_{varphi}$ for a class of composition operators. We completely characterize multiplication operators which are $m$-isometries. As an application of the 3-isometry, we describe the reducing subspaces of $M_{varphi}$ on $S^{2}({mathbb{D}})$ when $varphi$ is a finite Blaschke product of order 2.
For a pointwise multiplier $varphi$ of the Hardy-Sobolev space $H^2_beta$ on the open unit ball $bn$ in $cn$, we study spectral properties of the multiplication operator $M_varphi: H^2_betato H^2_beta$. In particular, we compute the spectrum and esse
The role of Liouville operators in the study of dynamical systems through the use of occupation measures have been an active area of research in control theory over the past decade. This manuscript investigates Liouville operators over the Hardy spac
In this paper, we study the reducing subspaces for the multiplication operator by a finite Blaschke product $phi$ on the Dirichlet space $D$. We prove that any two distinct nontrivial minimal reducing subspaces of $M_phi$ are orthogonal. When the ord
We consider composition operators $mathscr{C}_varphi$ on the Hardy space of Dirichlet series $mathscr{H}^2$, generated by Dirichlet series symbols $varphi$. We prove two different subordination principles for such operators. One concerns affine symbo
Let $mathscr{H}^2$ denote the Hilbert space of Dirichlet series with square-summable coefficients. We study composition operators $mathscr{C}_varphi$ on $mathscr{H}^2$ which are generated by symbols of the form $varphi(s) = c_0s + sum_{ngeq1} c_n n^{