ﻻ يوجد ملخص باللغة العربية
A substantial thread of recent work on latent tree learning has attempted to develop neural network models with parse-valued latent variables and train them on non-parsing tasks, in the hope of having them discover interpretable tree structure. In a recent paper, Shen et al. (2018) introduce such a model and report near-state-of-the-art results on the target task of language modeling, and the first strong latent tree learning result on constituency parsing. In an attempt to reproduce these results, we discover issues that make the original results hard to trust, including tuning and even training on what is effectively the test set. Here, we attempt to reproduce these results in a fair experiment and to extend them to two new datasets. We find that the results of this work are robust: All variants of the model under study outperform all latent tree learning baselines, and perform competitively with symbolic grammar induction systems. We find that this model represents the first empirical success for latent tree learning, and that neural network language modeling warrants further study as a setting for grammar induction.
With the recent success and popularity of pre-trained language models (LMs) in natural language processing, there has been a rise in efforts to understand their inner workings. In line with such interest, we propose a novel method that assists us in
In this work, we propose a new language modeling paradigm that has the ability to perform both prediction and moderation of information flow at multiple granularities: neural lattice language models. These models construct a lattice of possible paths
We propose an extension to neural network language models to adapt their prediction to the recent history. Our model is a simplified version of memory augmented networks, which stores past hidden activations as memory and accesses them through a dot
We investigate video-aided grammar induction, which learns a constituency parser from both unlabeled text and its corresponding video. Existing methods of multi-modal grammar induction focus on learning syntactic grammars from text-image pairs, with
We propose Diverse Embedding Neural Network (DENN), a novel architecture for language models (LMs). A DENNLM projects the input word history vector onto multiple diverse low-dimensional sub-spaces instead of a single higher-dimensional sub-space as i