ﻻ يوجد ملخص باللغة العربية
We compute two-particle production in p+A collisions and extract azimuthal harmonics, using the dilute-dense formalism in the Color Glass Condensate framework. The multiple scatterings of the partons inside the projectile proton on the dense gluons inside the target nucleus are expressed in terms of Wilson lines. They generate interesting correlations, which can be partly responsible for the signals of collectivity measured at RHIC and at the LHC. Most notably, while gluon Wilson loops yield vanishing odd harmonics, quark Wilson loops can generate sizable odd harmonics for two particle correlations. By taking both quark and gluon channels into account, we find that the overall second and third harmonics lie rather close to the recent PHENIX data at RHIC.
We calculate inclusive hadron productions in pA collisions in the small-x saturation formalism at one-loop order. The differential cross section is written into a factorization form in the coordinate space at the next-to-leading order, while the naiv
Quarkonium production in high-energy proton (deuteron)-nucleus collisions is investigated in the color glass condensate framework. We employ the color evaporation model assuming that the quark pair produced from dense small-x gluons in the nuclear ta
This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discus
In this paper we estimate the double parton scattering (DPS) contribution for the heavy quark production in $pA$ collisions at the LHC. The cross sections for the charm and bottom production are estimated using the dipole approach and taking into acc
The nuclear modification factor $R_{pA}(p_T)$ provides information on the small-$x$ gluon distribution of a nucleus at hadron colliders. Several experiments have recently measured the nuclear modification factor not only in minimum bias but also for