ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron Dark Matter Decays and Correlation Coefficients of Neutron Beta Decays

102   0   0.0 ( 0 )
 نشر من قبل A. N. Ivanov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As we have pointed out in (arXiv:1806.10107 [hep-ph]), the existence of neutron dark matter decay modes n -> chi + anything, where chi is a dark matter fermion, for the solution of the neutron lifetime problem changes priorities and demands to describe the neutron lifetime tau_n = 888.0(2.0)s, measured in beam experiments and defined by the decay modes n -> p + anything, in the Standard Model (SM). The latter requires the axial coupling constant lambda to be equal to lambda = - 1.2690 (arXiv:1806.10107 [hep-ph]). Since such an axial coupling constant is excluded by experimental data reported by the PERKEO II and UCNA Collaborations, the neutron lifetime tau_n = 888.0(2.0)s can be explained only by virtue of interactions beyond the SM, namely, by the Fierz interference term of order b ~ - 10^{-2} dependent on scalar and tensor coupling constants. We give a complete analysis of all correlation coefficients of the neutron beta decays with polarized neutron, taking into account the contributions of scalar and tensor interactions beyond the SM with the Fierz interference term b ~ - 10^{-2}. We show that the obtained results agree well with the contemporary experimental data that does not prevent the neutron with the rate of the decay modes n -> p + anything, measured in beam experiments, to have dark matter decay modes n -> chi + anything.



قيم البحث

اقرأ أيضاً

We analyze the contributions of the one-pion-pole (OPP) exchange, caused by strong low-energy interactions, and the pseudoscalar interaction beyond the Standard Model (BSM) to the correlation coefficients of the neutron beta-decays for polarized neut rons, polarized electrons and unpolarized protons. The strength of contributions of pseudoscalar interactions is defined by the effective coupling constant C_ps = C^(OPP)_ps + C^(BSM)_ps. We show that the contribution of the OPP exchange is of order C^(OPP)_ps ~ - 10^(-5). The effective coupling constant C^(BSM)_ps of the pseudoscalar interaction BSM can be in principle complex. Using the results, obtained by Gonzalez-Alonso et al.( Prog. Part. Nucl. Phys. 104, 165 (2019)) we find that the values of the real and imaginary parts of the effective coupling constant C^(BSM)_ps are constrained by - 3.5x10^{-5} < ReC^(BSM)_ps < 0 and ImC^(BSM)_ps < - 2.3x10^(-5), respectively. The obtained results can be used as a theoretical background for experimental searches of contributions of interactions BSM in asymmetries of the neutron beta-decays with a polarized neutron, a polarized electron and an unpolarized proton at the level of accuracy of a few parts of $10^{-5}$ or even better (Abele, Hyperfine Interact.237, 155 (2016)).
We demonstrate that the observation of neutron stars with masses greater than one solar mass places severe demands on any exotic neutron decay mode that could explain the discrepancy between beam and bottle measurements of the neutron lifetime. If th e neutron can decay to a stable, feebly-interacting dark fermion, the maximum possible mass of a neutron star is 0.7 solar masses, while all well-measured neutron star masses exceed one solar mass. The survival of $2 M_odot$ neutron stars therefore indicates that any explanation beyond the Standard Model for the neutron lifetime puzzle requires dark matter to be part of a multi-particle dark sector with highly constrained interactions.
We calculate the correlation coefficients of the electron-energy and electron-antineutrino angular distribution of the neutron beta decay with polarized electron and unpolarised neutron and proton. The calculation is carried out within the Standard M odel (SM) with the contributions, caused by the weak magnetism, proton recoil and radiative corrections of order of 10^{-3}, Wilkinsons corrections of order 10^{-5}$(Wilkinson, Nucl. Phys. A377, 474 (1982) and Ivanov et al., Phys. Rev. C95, 055502 (2017)) and the contributions of interactions beyond the SM. The obtained results can be used for the analysis of experimental data on searches of interactions beyond the SM at the level of 10^{-4} (Abele, Hyperfine Interact. 237, 155 (2016)). The contributions of G-odd correlations are calculated and found at the level of 10^{-5} in agreement with the results obtained by Gardner and Plaster (Phys. Rev. C87, 065504 (2013)) and Ivanov et al. (Phys. Rev. C98, 035503 (2018)).
In the standard effective V - A theory of low-energy weak interactions (i.e. in the Standard Model (SM)) we analyze the structure of the correlation coefficients S(E_e) and U(E_e), where E_e is the electron energy. These correlation coefficients were introduced to the electron-energy and angular distribution of the neutron beta decay by Ebel and Feldman ( Nucl. Phys. 4, 213 (1957)) in addition to the set of correlation coefficients proposed by Jackson et al. (Phys. Rev. 106, 517 (1957)). The correlation coefficients $S(E_e)$ and $U(E_e)$ are induced by simultaneous correlations of the neutron and electron spins and electron and antineutrino 3-momenta. These correlation structures do no violate discrete P, C and T symmetries. We analyze the contributions of the radiative corrections of order O(alpha/pi), taken to leading order in the large nucleon mass m_N expansion, and corrections of order O(E_e/m_N), caused by weak magnetism and proton recoil. In addition to the obtained SM corrections we calculate the contributions of interactions beyond the SM (BSM contributions) in terms of the phenomenological coupling constants of BSM interactions by Jackson et al. (Phys. Rev. 106, 517 (1957)) and the second class currents by Weinberg (Phys. Rev. 112, 1375 (1958)).
85 - Dinko Pocanic 2017
Although well studied, the neutron still offers a unique laboratory for precise tests of Standard Model (SM) predictions. Neutron decay is free of nuclear structure corrections present in nuclear beta decays, and, with a $10^8$ times larger branching ratio than the theoretically cleaner pion beta decay, it is more readily accessible to experimental study than the latter. Measurements at sufficient precision of the neutron lifetime, and of correlations in free neutron beta decay, offer several stringent tests of the SM, including the weak quark couplings (quark-lepton universality), and certain extensions beyond the standard $V-A$ weak interaction theory. This paper focuses on the long-running free neutron beta decay experimental program aimed at obtaining an independent determination of the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix element $V_{ud}$. We discuss the present state of precision achieved in this program and briefly review the currently active projects, as well as the expected near-term improvements in the field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا