ﻻ يوجد ملخص باللغة العربية
The electron sheath formation in a DC magnetised plasma of modified hollow cathode source is studied. The discharge consists of two plane parallel cathodes and a small cubical anode placed off axis at the center. The argon plasma is produced and the properties of the plasma in response to the sheath formation near the anode are studied using electrical and optical diagnostics. In particular, the effect of pressure, magnetic field on discharge parameters such as discharge current, plasma potential, plasma density and electron temperature is studied. The discharge showed an onset of anode glow at a critical applied magnetic field indicating the formation of electron sheath and a double layer. The discharge current initially decreases; however it starts to rise again as the anode spot appears on the anode. The critical magnetic field at which anode glow formation takes place is dependent upon operating pressure and discharge voltage. The transition from ion sheath to electron sheath is investigated in detail by Langmuir probe and spectroscopy diagnostics. The plasma potential near the anode decreases during the transition from ion sheath to electron sheath. The plasma potential locks to the ionization potential of argon gas when anode spot is completely formed. A systematic study showed that during the transition, the electron temperature increases and plasma density decreases in the bulk plasma. The spectroscopy of the discharge showed presence of strong atomic and ionic lines of argon. The intensity of these spectral lines showed a dip during the transition between two sheaths. After the formation of the anode spot, oscillations of the order of 5-20 kHz are observed in the discharge current and floating potential due to the enhanced ionisation and excitation processes in the electron sheath.
Self-organized patterns of cathode spots in glow discharges are computed in the cathode boundary layer geometry, which is the one employed in most of the experiments reported in the literature. The model comprises conservation and transport equations
This paper presents the application of two classical models to high-resolution electric field measurements carried out in a hollow cathode discharge operated in pure hydrogen plasma. The electric field determination has been done via the Stark shifti
This paper describes how to light several microdischarges in parallel without having to individually ballast each one. The V-I curve of a microhollow cathode discharge is characterized by a constant voltage in the normal glow regime because the plasm
The ionization efficiency of helicon plasma discharge is explored by changing the low axial magnetic field gradients near the helicon antenna. The highest plasma density is found for a most possible diverging field near the antenna by keeping the oth
In order to break the limitation of plasma nitriding technology,which can be applied to a few nonmetallic gaseous elements, the Double Glow Discharge Phenomenon was found and then invented the Double Glow Plasma Surface Metallurgy Technology. This do