ﻻ يوجد ملخص باللغة العربية
Motivated by the recent work of Brzeminski, Motyka, Sadzikowski and Stebel in arXiv:1611.04449, where forward Drell--Yan production is studied in proton-proton collisions at the LHC, we improve their calculation by introducing an unintegrated gluon density obtained in arXiv:1209.1353 and arXiv:1301.5283 from a fit to combined HERA data at small values of Bjorken $x$. This gluon density was calculated within the BFKL formalism at next-to-leading order with collinear corrections. We show that it generates a good description of the forward Drell--Yan cross section dependence on the invariant mass of the lepton pair both for LHCb and ATLAS data.
We analyze the Drell-Yan lepton pair production at forward rapidity at the Large Hadron Collider. Using the dipole framework for the computation of the cross section we find a significant suppression in comparison to the collinear factorization formu
We propose a new process which probes the BFKL dynamics in the high energy proton-proton scattering, namely the forward Drell-Yan (DY) production accompanied by a backward jet, separated from the DY lepton pair by a large rapidity interval. The propo
Production of a forward Drell-Yan lepton pair accompanied by a jet separated by a large rapidity interval is proposed to study the BFKL evolution at the LHC. Several observables to be measured are presented including the azimuthal angle dependence of
We consider a four site Higgsless model based on the $SU(2)_Ltimes SU(2)_1times SU(2)_2times U(1)_Y$ gauge symmetry, which predicts two neutral and four charged extra gauge bosons, $Z_{1,2}$ and $W^pm_{1,2}$. We compute the properties of the new part
Global analyses of Parton Distribution Functions (PDFs) have provided incisive constraints on the up and down quark components of the proton, but constraining the other flavor degrees of freedom is more challenging. Higher-order theory predictions an