ﻻ يوجد ملخص باللغة العربية
First-ascent red giants with masses below about $2,M_odot$ ignite helium in their degenerate core as a flash. Stellar evolution codes predict that the He flash consists of a series of consecutive subflashes. The detection of mixed modes in red giants from space missions CoRoT and Kepler has opened new opportunities to search for stars in this evolution stage. During a subflash, the He burning shell is convective, which splits the cavity of gravity modes in two. We here investigate how this additional cavity modifies the oscillation spectrum of the star. We calculate the asymptotic mode frequencies of stellar models going through a He subflash using the JWKB approximation. To predict the detectability of the modes, we estimate their expected heights, taking into account the effects of radiative damping in the core. Our results are then compared to the oscillation spectra obtained by calculating numerically the mode frequencies during a He subflash. We show that during a He subflash, the detectable oscillation spectrum mainly consists of modes trapped in the acoustic cavity and in the outer g-mode cavity. The spectrum should thus resemble that of a core-helium-burning giant. However, we find a list of clear, detectable features that could enable us to identify red giants passing through a He subflash. In particular, during a He subflash, several modes that are trapped in the innermost g-mode cavity are expected to be detectable. We show that these modes could be identified by their frequencies or by their rotational splittings. Other features, such as the measured period spacing of gravity modes or the location of the H-burning shell within the g-mode cavity could also be used to identify stars going through a He subflash. The features derived in this study can now be searched for in the large datasets provided by the CoRoT and Kepler missions.
All evolved stars with masses $M_starlesssim 2M_odot$ undergo a helium(He)-core flash at the end of their first stage as a giant star. Although theoretically predicted more than 50 years ago, this core-flash phase has yet to be observationally probed
The detection of mixed modes in red giants with space missions CoRoT and Kepler has revealed their deep internal structure. These modes allow us to characterize the pattern of pressure modes (through the measurement of their asymptotic frequency sepa
The helium-enriched (He-enriched) metal-rich red giants of Omega Centauri, discovered by Hema and Pandey using the low-resolution spectra from the Vainu Bappu Telescope (VBT) and confirmed by the analyses of the high-resolution spectra obtained from
Eclipsing binaries (EBs) are unique benchmarks for stellar evolution. On the one hand, detached EBs hosting at least one star with detectable solar-like oscillations constitute ideal test objects to calibrate asteroseismic measurements. On the other
High spectral resolution and high signal-to-noise ratio optical spectra of red giants in the globular cluster Omega Centauri are analysed for stellar parameters and chemical abundances of 15 elements including helium by either line equivalent widths