ﻻ يوجد ملخص باللغة العربية
We find that the recently developed self consistent and appropriately normed (SCAN) meta-generalized gradient approximation, which has been found to provide highly accurate results for many materials, is, however, not able to describe the stability and properties of phases of Fe important for steel. This is due to an overestimated tendency towards magnetism and exaggeration of magnetic energies, which we also find in other transition metals.
The magnetic properties of the intermetallic compound FeAl are investigated using exact exchange density functional theory. This is implemented within a state of the art all-electron full potential method. We find that FeAl is magnetic with a moment
We use dispersion-corrected density-functional theory to determine the relative energies of competing polytypes of bulk layered hexagonal post-transition-metal chalcogenides, to search for the most stable structures of these potentially technological
We systematically calculate the structure, formation enthalpy, formation free energy, elastic constants and electronic structure of Ti$_{0.98}$X$_{0.02}$ system by density functional theory (DFT) simulations to explore the effect of transition metal
We report on our investigation of the crystal structure of arsenic under compression, focusing primarily on the pressure-induced A7 to simple cubic (sc) phase transition. The two-atom rhombohedral unit cell is subjected to pressures ranging from 0 GP
Two-dimensional (2D) transition-metal oxide perovskites greatly expand the field of available 2D multifunctional material systems. Here, based on density functional theory calculations, we predicted the presence of ferromagnetism orders accompanying