ﻻ يوجد ملخص باللغة العربية
The Earth is impacted by 35-40 metre-scale objects every year. These meteoroids are the low mass end of impactors that can do damage on the ground. Despite this they are very poorly surveyed and characterised, too infrequent for ground based fireball bservation efforts, and too small to be efficiently detected by NEO telescopic surveys whilst still in interplanetary space. We want to evaluate the suitability of different instruments for characterising metre-scale impactors and where they come from. We use data collected over the first 3 years of operation of the continent-scale Desert Fireball Network, and compare results with other published results as well as orbital sensors. We find that although the orbital sensors have the advantage of using the entire planet as collecting area, there are several serious problems with the accuracy of the data, notably the reported velocity vector, which is key to getting an accurate pre-impact orbit and calculating meteorite fall positions. We also outline dynamic range issues that fireball networks face when observing large meteoroid entries.
The detection of fireballs streaks in astronomical imagery can be carried out by a variety of methods. The Desert Fireball Network--DFN--uses a network of cameras to track and triangulate incoming fireballs to recover meteorites with orbits. Fireball
Objects gravitationally captured by the Earth-Moon system are commonly called temporarily captured orbiters (TCOs), natural Earth satellites, or minimoons. TCOs are a crucially important subpopulation of near-Earth objects (NEOs) to understand becaus
The Desert Fireball Network observed a significant outburst of fireballs belonging to the Southern Taurid Complex of meteor showers between October 27 and November 17, 2015. At the same time, the Cameras for Allsky Meteor Surveillance project detecte
Asteroid 2009 FD could impact Earth between 2185 and 2196. The long term propagation to the possible impacts and the intervening planetary encounters make 2009 FD one of the most challenging asteroids in terms of hazard assessment. To compute accurat
The worlds meteorite collections contain a very rich picture of what the early Solar System would have been made of, however the lack of spatial context with respect to their parent population for these samples is an issue. The asteroid population is