ﻻ يوجد ملخص باللغة العربية
We present a Quantum Monte Carlo (QMC) study, based on the Langevin equation, of a Hamiltonian describing electrons coupled to phonon degrees of freedom. The bosonic part of the action helps control the variation of the field in imaginary time. As a consequence, the iterative conjugate gradient solution of the fermionic action, which depends on the boson coordinates, converges more rapidly than in the case of electron-electron interactions, such as the Hubbard Hamiltonian. Fourier Acceleration is shown to be a crucial ingredient in reducing the equilibration and autocorrelation times. After describing and benchmarking the method, we present results for the phase diagram focusing on the range of the electron-phonon interaction. We delineate the regions of charge density wave formation from those in which the fermion density is inhomogeneous, caused by phase separation. We show that the Langevin approach is more efficient than the Determinant QMC method for lattice sizes $N gtrsim 8 times 8$ and that it therefore opens a potential path to problems including, for example, charge order in the 3D Holstein model.
The electron-phonon interaction is of central importance for the electrical and thermal properties of solids, and its influence on superconductivity, colossal magnetoresistance, and other many-body phenomena in correlated-electron materials is curren
The Hubbard-Holstein model describes fermions on a discrete lattice, with on-site repulsion between fermions and a coupling to phonons that are localized on sites. Generally, at half-filling, increasing the coupling $g$ to the phonons drives the syst
Over the past several years, reliable Quantum Monte Carlo results for the charge density wave transition temperature $T_{cdw}$ of the half-filled two dimensional Holstein model in square and honeycomb lattices have become available for the first time
Establishing a minimal microscopic model for cuprates is a key step towards the elucidation of a high-$T_c$ mechanism. By a quantitative comparison with a recent emph{in situ} angle-resolved photoemission spectroscopy measurement in doped 1D cuprate
We use Langevin sampling methods within the auxiliary-field quantum Monte Carlo algorithm to investigate the phases of the Su-Schrieffer-Heeger model on the square lattice at the O(4) symmetric point. Based on an explicit determination of the density