ترغب بنشر مسار تعليمي؟ اضغط هنا

The Scattering and Intrinsic Structure of Sagittarius A* at Radio Wavelengths

121   0   0.0 ( 0 )
 نشر من قبل Michael Johnson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radio images of the Galactic Center supermassive black hole, Sagittarius A* (Sgr A*), are dominated by interstellar scattering. Previous studies of Sgr A* have adopted an anisotropic Gaussian model for both the intrinsic source and the scattering, and they have extrapolated the scattering using a purely $lambda^2$ scaling to estimate intrinsic properties. However, physically motivated source and scattering models break all three of these assumptions. They also predict that refractive scattering effects will be significant, which have been ignored in standard model fitting procedures. We analyze radio observations of Sgr A* using a physically motivated scattering model, and we develop a prescription to incorporate refractive scattering uncertainties when model fitting. We show that an anisotropic Gaussian scattering kernel is an excellent approximation for Sgr A* at wavelengths longer than 1cm, with an angular size of $(1.380 pm 0.013) lambda_{rm cm}^2,{rm mas}$ along the major axis, $(0.703 pm 0.013) lambda_{rm cm}^2,{rm mas}$ along the minor axis, and a position angle of $81.9^circ pm 0.2^circ$. We estimate that the turbulent dissipation scale is at least $600,{rm km}$, with tentative support for $r_{rm in} = 800 pm 200,{rm km}$, suggesting that the ion Larmor radius defines the dissipation scale. We find that the power-law index for density fluctuations in the scattering material is $beta < 3.47$, shallower than expected for a Kolmogorov spectrum ($beta=11/3$), and we estimate $beta = 3.38^{+0.08}_{-0.04}$ in the case of $r_{rm in} = 800,{rm km}$. We find that the intrinsic structure of Sgr A* is nearly isotropic over wavelengths from 1.3mm to 1.3cm, with a size that is roughly proportional to wavelength. We discuss implications for models of Sgr A*, for theories of interstellar turbulence, and for imaging Sgr A* with the Event Horizon Telescope.



قيم البحث

اقرأ أيضاً

The radio emission from Sgr A$^ast$ is thought to be powered by accretion onto a supermassive black hole of $sim! 4times10^6~ rm{M}_odot$ at the Galactic Center. At millimeter wavelengths, Very Long Baseline Interferometry (VLBI) observations can dir ectly resolve the bright innermost accretion region of Sgr A$^ast$. Motivated by the addition of many sensitive, long baselines in the north-south direction, we developed a full VLBI capability at the Large Millimeter Telescope Alfonso Serrano (LMT). We successfully detected Sgr A$^ast$ at 3.5~mm with an array consisting of 6 Very Long Baseline Array telescopes and the LMT. We model the source as an elliptical Gaussian brightness distribution and estimate the scattered size and orientation of the source from closure amplitude and self-calibration analysis, obtaining consistent results between methods and epochs. We then use the known scattering kernel to determine the intrinsic two dimensional source size at 3.5 mm: $(147pm7~murm{as}) times (120pm12~murm{as})$, at position angle $88^circpm7^circ$ east of north. Finally, we detect non-zero closure phases on some baseline triangles, but we show that these are consistent with being introduced by refractive scattering in the interstellar medium and do not require intrinsic source asymmetry to explain.
We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, Califor nia, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional {it uv} coverage in the N-S direction, and leads to a spatial resolution of $sim$30 $mu$as ($sim$3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of $sim$4-13% of the total flux density. We argue that such flux densities cannot result from interstellar refractive scattering alone, but indicate the presence of compact intrinsic source structure on scales of $sim$3 Schwarzschild radii. The measured nonzero closure phases rule out point-symmetric emission. We discuss our results in the context of simple geometric models that capture the basic characteristics and brightness distributions of disk- and jet-dominated models and show that both can reproduce the observed data. Common to these models are the brightness asymmetry, the orientation, and characteristic sizes, which are comparable to the expected size of the black hole shadow. Future 1.3 mm VLBI observations with an expanded array and better sensitivity will allow a more detailed imaging of the horizon-scale structure and bear the potential for a deep insight into the physical processes at the black hole boundary.
We studied the nearby, interacting galaxy NGC 5195 (M51b) in the radio, optical and X-ray bands. We mapped the extended, low-surface-brightness features of its radio-continuum emission; determined the energy content of its complex structure of shock- ionized gas; constrained the current activity level of its supermassive nuclear black hole. In particular, we combined data from the European Very Long Baseline Interferometry Network (~1-pc scale), from our new e-MERLIN observations (~10-pc scale), and from the Very Large Array (~100-1000-pc scale), to obtain a global picture of energy injection in this galaxy. We put an upper limit to the luminosity of the (undetected) flat-spectrum radio core. We find steep-spectrum, extended emission within 10 pc of the nuclear position, consistent with optically-thin synchrotron emission from nuclear star formation or from an outflow powered by an active galactic nucleus (AGN). A linear spur of radio emission juts out of the nuclear source towards the kpc-scale arcs (detected in radio, Halpha and X-ray bands). From the size, shock velocity, and Balmer line luminosity of the kpc-scale bubble, we estimate that it was inflated by a long-term-average mechanical power ~3-6 x 10^{41} erg/s over the last 3-6 Myr. This is an order of magnitude more power than can be provided by the current level of star formation, and by the current accretion power of the supermassive black hole. We argue that a jet-inflated bubble scenario associated with previous episodes of AGN activity is the most likely explanation for the kpc-scale structures.
Observations of the Galactic Center supermassive black hole Sagittarius A* (Sgr A*) with very long baseline interferometry (VLBI) are affected by interstellar scattering along our line of sight. At long radio observing wavelengths ($gtrsim1,$cm), the scattering heavily dominates image morphology. At 3.5 mm (86 GHz), the intrinsic source structure is no longer sub-dominant to scattering, and thus the intrinsic emission from Sgr A* is resolvable with the Global Millimeter VLBI Array (GMVA). Long-baseline detections to the phased Atacama Large Millimeter/submillimeter Array (ALMA) in 2017 provided new constraints on the intrinsic and scattering properties of Sgr A*, but the stochastic nature of the scattering requires multiple observing epochs to reliably estimate its statistical properties. We present new observations with the GMVA+ALMA, taken in 2018, which confirm non-Gaussian structure in the scattered image seen in 2017. In particular, the ALMA-GBT baseline shows more flux density than expected for an anistropic Gaussian model, providing a tight constraint on the source size and an upper limit on the dissipation scale of interstellar turbulence. We find an intrinsic source extent along the minor axis of $sim100,mu$as both via extrapolation of longer wavelength scattering constraints and direct modeling of the 3.5 mm observations. Simultaneously fitting for the scattering parameters, we find an at-most modestly asymmetrical (major-to-minor axis ratio of $1.5pm 0.2$) intrinsic source morphology for Sgr A*.
This paper considers the suitability of a number of emerging and future instruments for the study of radio recombination lines (RRLs) at frequencies below 200 MHz. These lines arise only in low-density regions of the ionized interstellar medium, and they may represent a frequency-dependent foreground for next-generation experiments trying to detect H I signals from the Epoch of Reionization and Dark Ages (21-cm cosmology). We summarize existing decametre-wavelength observations of RRLs, which have detected only carbon RRLs. We then show that, for an interferometric array, the primary instrumental factor limiting detection and study of the RRLs is the areal filling factor of the array. We consider the Long Wavelength Array (LWA-1), the LOw Frequency ARray (LOFAR), the low-frequency component of the Square Kilometre Array (SKA-lo), and a future Lunar Radio Array (LRA), all of which will operate at decametre wavelengths. These arrays offer digital signal processing, which should produce more stable and better defined spectral bandpasses; larger frequency tuning ranges; and better angular resolution than that of the previous generation of instruments that have been used in the past for RRL observations. Detecting Galactic carbon RRLs, with optical depths at the level of 10^-3, appears feasible for all of these arrays, with integration times of no more than 100 hr. The SKA-lo and LRA, and the LWA-1 and LOFAR at the lowest frequencies, should have a high enough filling factor to detect lines with much lower optical depths, of order 10^-4 in a few hundred hours. The amount of RRL-hosting gas present in the Galaxy at the high Galactic latitudes likely to be targeted in 21-cm cosmology studies is currently unknown. If present, however, the spectral fluctuations from RRLs could be comparable to or exceed the anticipated H I signals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا