ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-tearing and self-peeling of folded graphene nanoribbons

153   0   0.0 ( 0 )
 نشر من قبل Douglas Galvao
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A recent experimental study showed that an induced folded flap of graphene can spontaneously drive itself its tearing and peeling off a substrate, thus producing long, micrometer sized, regular trapezoidal-shaped folded graphene nanoribbons. As long as the size of the graphene flaps is above a threshold value, the tug of war between the forces of adhesion of graphene-graphene and graphene-substrate, flexural strain of folded region and carbon-carbon (C-C) covalent bonds favor the self-tearing and self-peeling off process. As the detailed information regarding the atomic scale mechanism involved in the process remains not fully understood, we carried out atomistic reactive molecular dynamics simulations to address some features of the process. We show that large thermal fluctuations can prevent the process by increasing the probability of chemical reactions between carbon dangling bonds of adjacent graphene layers. The effects of the strength of attraction between graphene and the substrate on the ribbon growth velocities at the early stages of the phenomenon were also investigated. Structures with initial armchair crack-edges were observed to form more uniform cuts than those having initial zigzag ones. Our results are of importance to help set up new experiments on this phenomenon, especially with samples with nanoscale sized cuts.



قيم البحث

اقرأ أيضاً

It is now possible to produce graphene nanoribbons (GNRs) with atomically defined widths. GNRs offer many opportunities for electronic devices and composites, if it is possible to establish the link between edge structure and functionalisation, and r esultant GNR properties. Switching hydrogen edge termination to larger more complex functional groups such as hydroxyls or thiols induces strain at the ribbon edge. However we show that this strain is then relieved via the formation of static out-of-plane ripples. The resultant ribbons have a significantly reduced Youngs Modulus which varies as a function of ribbon width, modified band gaps, as well as heterogeneous chemical reactivity along the edge. Rather than being the exception, such static edge ripples are likely on the majority of functionalized graphene ribbon edges.
187 - K. Sasaki , K. Kato , Y. Tokura 2011
Matrix elements of electron-light interactions for armchair and zigzag graphene nanoribbons are constructed analytically using a tight-binding model. The changes in wavenumber ($Delta n$) and pseudospin are the necessary elements if we are to underst and the optical selection rule. It is shown that an incident light with a specific polarization and energy, induces an indirect transition ($Delta n=pm1$), which results in a characteristic peak in absorption spectra. Such a peak provides evidence that the electron standing wave is formed by multiple reflections at both edges of a ribbon. It is also suggested that the absorption of low-energy light is sensitive to the position of the Fermi energy, direction of light polarization, and irregularities in the edge. The effect of depolarization on the absorption peak is briefly discussed.
Graphene nanoribbons are widely regarded as promising building blocks for next-generation carbon-based devices. A critical issue to their prospective applications is whether and to what degree their electronic structure can be externally controlled. Here, we combine simple model Hamiltonians with extensive first-principles calculations to investigate the response of armchair graphene nanoribbons to transverse electric fields. Such fields can be achieved either upon laterally gating the nanoribbon or incorporating ambipolar chemical co-dopants along the edges. We reveal that the field induces a semiconductor-to-semimetal transition, with the semimetallic phase featuring zero-energy Dirac fermions that propagate along the armchair edges. The transition occurs at critical fields that scale inversely with the width of the nanoribbons. These findings are universal to group-IV honeycomb lattices, including silicene and germanene nanoribbons, irrespective of the type of edge termination. Overall, our results create new opportunities to electrically engineer Dirac fermions in otherwise semiconducting graphene-like nanoribbons.
We derive the generalized magneto-absorption spectra for curved graphene nanorib- bons and carbon nanotubes by using the Peierls tight-binding model. The main spectral characteristics and the optical selection rules result from the cooperative or com petitive relationships between the geometric structure and a magnetic field. In curved ribbons, the dominant selection rule remains unchanged during the variation of the curvature. When the arc angle increases, the prominent peaks are split, with some even vanishing as the angle exceeds a critical value. In carbon nanotubes, the angular-momentum coupling induces extra selection rules, of which more are revealed due to the increase of either (both) of the factors: tube diameter and field strength. Particularly once the two factors exceed certain critical values, the optical spectra could reflect the quasi-Landau-level structures. The identifying features of the spec- tra provide insight into optical excitations for curved systems with either open or closed boundary condition.
We report on heat conduction properties of thermal interface materials with self-aligning magnetic grapheme fillers. Graphene enhanced nano-composites were synthesized by an inexpensive and scalable technique based on liquid-phase exfoliation. Functi onalization of graphene and few-layer-graphene flakes with Fe3O4 nanoparticles allowed us to align the fillers in an external magnetic field during dispersion of the thermal paste to the connecting surfaces. The filler alignment results in a strong increase of the apparent thermal conductivity and thermal diffusivity through the layer of nano-composite inserted between two metallic surfaces. The self-aligning magnetic grapheme fillers improve heat conduction in composites with both curing and non-curing matrix materials. The thermal conductivity enhancement with the oriented fillers is a factor of two larger than that with the random fillers even at the low ~1 wt. % of graphene loading. The real-life testing with computer chips demonstrated the temperature rise decrease by as much as 10oC with use of the non-curing thermal interface material with ~1 wt. % of the oriented fillers. Our proof-of-concept experiments suggest that the thermal interface materials with functionalized graphene and few-layer-graphene fillers, which can be oriented during the composite application to the surfaces, can lead to a new method of thermal management of advanced electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا