ﻻ يوجد ملخص باللغة العربية
We report the first sub-kiloparsec spatial resolution measurements of strongly inverted gas-phase metallicity gradients in two dwarf galaxies at $z$$sim$2. The galaxies have stellar masses $sim$$10^9M_odot$, specific star-formation rate $sim$20 Gyr$^{-1}$, and global metallicity $12+log({rm O/H})sim8.1$ (1/4 solar), assuming the Maiolino et al. (2008) strong line calibrations of OIII/Hb and OII/Hb. Their metallicity radial gradients are measured to be highly inverted, i.e., 0.122$pm$0.008 and 0.111$pm$0.017 dex/kpc, which is hitherto unseen at such small masses in similar redshift ranges. From the Hubble Space Telescope observations of the source nebular emission and stellar continuum, we present the 2-dimensional spatial maps of star-formation rate surface density, stellar population age, and gas fraction, which show that our galaxies are currently undergoing rapid mass assembly via disk inside-out growth. More importantly, using a simple chemical evolution model, we find that the gas fractions for different metallicity regions cannot be explained by pure gas accretion. Our spatially resolved analysis based on a more advanced gas regulator model results in a spatial map of net gaseous outflows, triggered by active central starbursts, that potentially play a significant role in shaping the spatial distribution of metallicity by effectively transporting stellar nucleosynthesis yields outwards. The relation between wind mass loading factors and stellar surface densities measured in different regions of our galaxies shows that a single type of wind mechanism, driven by either energy or momentum conservation, cannot explain the entire galaxy. These sources present a unique constraint on the effects of gas flows on the early phase of disk growth from the perspective of spatially resolved chemical evolution within individual systems.
We present integral field spectroscopy observations of two star-forming dwarf galaxies in the Virgo cluster (VCC135 and VCC324) obtained with PMAS/PPak at the Calar Alto 3.5 meter telescope. We derive metallicity maps using the N2 empirical calibrato
We measure the ionizing photon production efficiency ($xi_{ion}$) of low-mass galaxies ($10^{7.8}$-$10^{9.8}$ $M_{odot}$) at $1.4<z<2.7$, allowing us to better understand the contribution of dwarf galaxies to the ionizing background and cosmic reioni
The formation and evolution of galaxies is imprinted on their stellar population radial gradients. Two recent articles present conflicting results concerning the mass dependence of the metallicity gradients for early-type dwarf galaxies. On one side,
We report on the gas-phase metallicity gradients of a sample of 264 star-forming galaxies at 0.6 < z < 2.6, measured through deep near-infrared Hubble Space Telescope slitless spectroscopy. The observations include 12-orbit depth Hubble/WFC3 G102 gri
We explore the origin of stellar metallicity gradients in simulated and observed dwarf galaxies. We use FIRE-2 cosmological baryonic zoom-in simulations of 26 isolated galaxies as well as existing observational data for 10 Local Group dwarf galaxies.