ﻻ يوجد ملخص باللغة العربية
We study transport across either a potential or a magnetic barrier which is placed on the top surface of a three-dimensional thin topological insulator (TI). For such thin TIs, the top and bottom surfaces interact via a coupling $lambda$ which influences the transport properties of junctions constructed out of them. We find that for junctions hosting a potential barrier, the differential conductance oscillates with the barrier strength. The period of these oscillations doubles as the coupling $lambda$ changes from small values to a value close to the energy of the incident electrons. In contrast, for junctions with a magnetic barrier, the conductance approaches a non-zero constant as the barrier strength is increased. This feature is in contrast to the case of transport across a single TI surface where the conductance approaches zero as the strength of a magnetic barrier is increased. We also study the spin currents for these two kinds of barriers; in both cases, the spin current is found to have opposite signs on the top and bottom surfaces. Thus this system can be used to split applied charge currents to spin currents with opposite spin orientations which can be collected by applying opposite spin-polarized leads to the two surfaces. We show that several of these features of transport across finite width barriers can be understood analytically by studying the $delta$-function barrier limit. We discuss experiments which may test our theory.
We report on a study of an ultrathin topological insulator film with hybridization between the top and bottom surfaces, placed in a quantizing perpendicular magnetic field. We calculate the full Landau level spectrum of the film as a function of the
We study transport across a time-dependent magnetic barrier present on the surface of a three-dimensional topological insulator. We show that such a barrier can be implemented for Dirac electrons on the surface of a three-dimensional topological insu
An analysis of electron transport in graphene is presented in the presence of various arrangement of delta-function like magnetic barriers. The motion through one such barrier gives an unusual non specular refraction leading to asymmetric transmissio
The interplay between band topology and magnetic order plays a key role in quantum states of matter. MnBi2Te4, a van der Waals magnet, has recently emerged as an exciting platform for exploring Chern insulator physics. Its layered antiferromagnetic o
We develop a linear-response transport theory of diffusive spin and heat transport by magnons in magnetic insulators with metallic contacts. The magnons are described by a position dependent temperature and chemical potential that are governed by dif