Folding a focalized acoustical vortex on a flat holographic transducer: miniaturized selective acoustical tweezers


الملخص بالإنكليزية

Acoustical tweezers based on focalized acoustical vortices hold the promise of precise contactless 3D manipulation of millimeter down to sub-micrometer particles, microorganisms and cells with unprecedented combined selectivity and trapping force. Yet, the widespread dissemination of this technology has been hindered by severe limitations of current systems in terms of performance and/or miniaturization and integrability. In this paper, we unleash the potential of focalized acoustical vortices by developing the first flat, compact, single-electrodes focalized acoustical tweezers. These tweezers rely on holographic Archimedes-Fermat spiraling transducers obtained by folding a spherical acoustical vortex on a flat piezoelectric substrate. We demonstrate the ability of these tweezers to grab and displace micrometric objects in a standard microfluidic environment with unique selectivity. The simplicity of this system and its scalability to higher frequencies opens tremendous perspectives in microbiology, microrobotics and microscopy.

تحميل البحث