ترغب بنشر مسار تعليمي؟ اضغط هنا

Localized solar power prediction based on weather data from local history and global forecasts

92   0   0.0 ( 0 )
 نشر من قبل Chaitanya Poolla
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the recent interest in net-zero sustainability for commercial buildings, integration of photovoltaic (PV) assets becomes even more important. This integration remains a challenge due to high solar variability and uncertainty in the prediction of PV output. Most existing methods predict PV output using either local power/weather history or global weather forecasts, thereby ignoring either the impending global phenomena or the relevant local characteristics, respectively. This work proposes to leverage weather data from both local weather history and global forecasts based on time series modeling with exogenous inputs. The proposed model results in eighteen hour ahead forecasts with a mean accuracy of $approx$ 80% and uses data from the National Ocean and Atmospheric Administrations (NOAA) High-Resolution Rapid Refresh (HRRR) model.



قيم البحث

اقرأ أيضاً

89 - Yahui Li , Yang Li , Yuanyuan Sun 2018
As one important means of ensuring secure operation in a power system, the contingency selection and ranking methods need to be more rapid and accurate. A novel method-based least absolute shrinkage and selection operator (Lasso) algorithm is propose d in this paper to apply to online static security assessment (OSSA). The assessment is based on a security index, which is applied to select and screen contingencies. Firstly, the multi-step adaptive Lasso (MSA-Lasso) regression algorithm is introduced based on the regression algorithm, whose predictive performance has an advantage. Then, an OSSA module is proposed to evaluate and select contingencies in different load conditions. In addition, the Lasso algorithm is employed to predict the security index of each power system operation state with the consideration of bus voltages and power flows, according to Newton-Raphson load flow (NRLF) analysis in post-contingency states. Finally, the numerical results of applying the proposed approach to the IEEE 14-bus, 118-bus, and 300-bus test systems demonstrate the accuracy and rapidity of OSSA.
We consider a class of malicious attacks against remote state estimation. A sensor with limited resources adopts an acknowledgement (ACK)-based online power schedule to improve the remote state estimation performance. A malicious attacker can modify the ACKs from the remote estimator and convey fake information to the sensor. When the capability of the attacker is limited, we propose an attack strategy for the attacker and analyze the corresponding effect on the estimation performance. The possible responses of the sensor are studied and a condition for the sensor to discard ACKs and switch from online schedule to offline schedule is provided.
We present in this paper an application which automatically generates textual short-term weather forecasts for every municipality in Galicia (NW Spain), using the real data provided by the Galician Meteorology Agency (MeteoGalicia). This solution com bines in an innovative way computing with perceptions techniques and strategies for linguistic description of data together with a natural language generation (NLG) system. The application, named GALiWeather, extracts relevant information from weather forecast input data and encodes it into intermediate descriptions using linguistic variables and temporal references. These descriptions are later translated into natural language texts by the natural language generation system. The obtained forecast results have been thoroughly validated by an expert meteorologist from MeteoGalicia using a quality assessment methodology which covers two key dimensions of a text: the accuracy of its content and the correctness of its form. Following this validation GALiWeather will be released as a real service offering custom forecasts for a wide public.
This report first provides a brief overview of a number of supervised learning algorithms for regression tasks. Among those are neural networks, regression trees, and the recently introduced Nexting. Nexting has been presented in the context of reinf orcement learning where it was used to predict a large number of signals at different timescales. In the second half of this report, we apply the algorithms to historical weather data in order to evaluate their suitability to forecast a local weather trend. Our experiments did not identify one clearly preferable method, but rather show that choosing an appropriate algorithm depends on the available side information. For slowly varying signals and a proficient number of training samples, Nexting achieved good results in the studied cases.
Time series data in the retail world are particularly rich in terms of dimensionality, and these dimensions can be aggregated in groups or hierarchies. Valuable information is nested in these complex structures, which helps to predict the aggregated time series data. From a portfolio of brands under HUUBs monitoring, we selected two to explore their sales behaviour, leveraging the grouping properties of their product structure. Using statistical models, namely SARIMA, to forecast each level of the hierarchy, an optimal combination approach was used to generate more consistent forecasts in the higher levels. Our results show that the proposed methods can indeed capture nested information in the more granular series, helping to improve the forecast accuracy of the aggregated series. The Weighted Least Squares (WLS) method surpasses all other methods proposed in the study, including the Minimum Trace (MinT) reconciliation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا