ﻻ يوجد ملخص باللغة العربية
Parallel implementations of linear iterative solvers generally alternate between phases of data exchange and phases of local computation. Increasingly large problem sizes on more heterogeneous systems make load balancing and network layout very challenging tasks. In particular, global communication patterns such as inner products become increasingly limiting at scale. We explore the use of asynchronous communication based on one-sided MPI primitives in a multitude of domain decomposition solvers. In particular, a scalable asynchronous two-level method is presented. We discuss practical issues encountered in the development of a scalable solver and show experimental results obtained on state-of-the-art supercomputer systems that illustrate the benefits of asynchronous solvers in load balanced as well as load imbalanced scenarios. Using the novel method, we can observe speed-ups of up to 4x over its classical synchronous equivalent.
Physics-Informed Neural Networks (PINN) are neural networks encoding the problem governing equations, such as Partial Differential Equations (PDE), as a part of the neural network. PINNs have emerged as a new essential tool to solve various challengi
Unfitted finite element methods, e.g., extended finite element techniques or the so-called finite cell method, have a great potential for large scale simulations, since they avoid the generation of body-fitted meshes and the use of graph partitioning
Alternating least squares is the most widely used algorithm for CP tensor decomposition. However, alternating least squares may exhibit slow or no convergence, especially when high accuracy is required. An alternative approach is to regard CP decompo
Gauss-Seidel (GS) relaxation is often employed as a preconditioner for a Krylov solver or as a smoother for Algebraic Multigrid (AMG). However, the requisite sparse triangular solve is difficult to parallelize on many-core architectures such as graph
We present a neural network-based method for solving linear and nonlinear partial differential equations, by combining the ideas of extreme learning machines (ELM), domain decomposition and local neural networks. The field solution on each sub-domain