ترغب بنشر مسار تعليمي؟ اضغط هنا

On Traveling Solitary Waves and Absence of Small Data Scattering for Nonlinear Half-Wave Equations

91   0   0.0 ( 0 )
 نشر من قبل Jacopo Bellazzini
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider nonlinear half-wave equations with focusing power-type nonlinearity $$ i pt_t u = sqrt{-Delta} , u - |u|^{p-1} u, quad mbox{with $(t,x) in R times R^d$} $$ with exponents $1 < p < infty$ for $d=1$ and $1 < p < (d+1)/(d-1)$ for $d geq 2$. We study traveling solitary waves of the form $$ u(t,x) = e^{iomega t} Q_v(x-vt) $$ with frequency $omega in R$, velocity $v in R^d$, and some finite-energy profile $Q_v in H^{1/2}(R^d)$, $Q_v ot equiv 0$. We prove that traveling solitary waves for speeds $|v| geq 1$ do not exist. Furthermore, we generalize the non-existence result to the square root Klein--Gordon operator $sqrt{-DD+m^2}$ and other nonlinearities. As a second main result, we show that small data scattering fails to hold for the focusing half-wave equation in any space dimension. The proof is based on the existence and properties of traveling solitary waves for speeds $|v| < 1$. Finally, we discuss the energy-critical case when $p=(d+1)/(d-1)$ in dimensions $d geq 2$.



قيم البحث

اقرأ أيضاً

We consider dispersion generalized nonlinear Schrodinger equations (NLS) of the form $i partial_t u = P(D) u - |u|^{2 sigma} u$, where $P(D)$ denotes a (pseudo)-differential operator of arbitrary order. As a main result, we prove symmetry results for traveling solitary waves in the case of powers $sigma in mathbb{N}$. The arguments are based on Steiner type rearrangements in Fourier space. Our results apply to a broad class of NLS-type equations such as fourth-order (biharmonic) NLS, fractional NLS, square-root Klein-Gordon and half-wave equations.
We consider the quartic focusing Half Wave equation (HW) in one space dimension. We show first that that there exist traveling wave solutions with arbitrary small $H^{frac 12}(R)$ norm. This fact shows that small data scattering is not possible for ( HW) equation and that below the ground state energy there are solutions whose energy travels as a localised packet and which preserve this localisation in time. This behaviour for (HW) is in sharp contrast with classical NLS in any dimension and with fractional NLS with radial data. The second result addressed is the non existence of traveling waves moving at the speed of light. The main ingredients of the proof are commutator estimates and a careful study of spatial decay of traveling waves profile using the harmonic extension to the upper half space.
We consider the nonlinear Klein-Gordon equation in $R^d$. We call multi-solitary waves a solution behaving at large time as a sum of boosted standing waves. Our main result is the existence of such multi-solitary waves, provided the composing boosted standing waves are stable. It is obtained by solving the equation backward in time around a sequence of approximate multi-solitary waves and showing convergence to a solution with the desired property. The main ingredients of the proof are finite speed of propagation, variational characterizations of the profiles, modulation theory and energy estimates.
We study bifurcations and spectral stability of solitary waves in coupled nonlinear Schrodinger equations (CNLS) on the line. We assume that the coupled equations possess a solution of which one component is identically zero, and call it a $textit{fu ndamental solitary wave}$. By using a result of one of the authors and his collaborator, the bifurcations of the fundamental solitary wave are detected. We utilize the Hamiltonian-Krein index theory and Evans function technique to determine the spectral or orbital stability of the bifurcated solitary waves as well as as that of the fundamental one under some nondegenerate conditions which are easy to verify, compared with those of the previous results. We apply our theory to CNLS with a cubic nonlinearity and give numerical evidences for the theoretical results.
We consider nonlinear Schrodinger equations with either power-type or Hartree nonlinearity in the presence of an external potential. We show that for long-range nonlinearities, solutions cannot exhibit scattering to solitary waves or more general loc alized waves. This extends the well-known results concerning non-existence of non-trivial scattering states for long-range nonlinearities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا