ﻻ يوجد ملخص باللغة العربية
In sequence generation task, many works use policy gradient for model optimization to tackle the intractable backpropagation issue when maximizing the non-differentiable evaluation metrics or fooling the discriminator in adversarial learning. In this paper, we replace policy gradient with proximal policy optimization (PPO), which is a proved more efficient reinforcement learning algorithm, and propose a dynamic approach for PPO (PPO-dynamic). We demonstrate the efficacy of PPO and PPO-dynamic on conditional sequence generation tasks including synthetic experiment and chit-chat chatbot. The results show that PPO and PPO-dynamic can beat policy gradient by stability and performance.
Deep reinforcement learning (RL) uses model-free techniques to optimize task-specific control policies. Despite having emerged as a promising approach for complex problems, RL is still hard to use reliably for real-world applications. Apart from chal
The recent remarkable progress of deep reinforcement learning (DRL) stands on regularization of policy for stable and efficient learning. A popular method, named proximal policy optimization (PPO), has been introduced for this purpose. PPO clips dens
In sequence to sequence generation tasks (e.g. machine translation and abstractive summarization), inference is generally performed in a left-to-right manner to produce the result token by token. The neural approaches, such as LSTM and self-attention
Stochastic gradient descent (SGD) is one of the most widely used optimization methods for parallel and distributed processing of large datasets. One of the key limitations of distributed SGD is the need to regularly communicate the gradients between
Sparsity-inducing regularization problems are ubiquitous in machine learning applications, ranging from feature selection to model compression. In this paper, we present a novel stochastic method -- Orthant Based Proximal Stochastic Gradient Method (