ترغب بنشر مسار تعليمي؟ اضغط هنا

Ample groupoids: equivalence, homology, and Matuis HK conjecture

61   0   0.0 ( 0 )
 نشر من قبل Carla Farsi E
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the homology of ample Hausdorff groupoids. We establish that a number of notions of equivalence of groupoids appearing in the literature coincide for ample Hausdorff groupoids, and deduce that they all preserve groupoid homology. We compute the homology of a Deaconu{Renault groupoid associated to k pairwisecommuting local homeomorphisms of a zero-dimensional space, and show that Matuis HK conjecture holds for such a groupoid when k is one or two. We specialise to k-graph groupoids, and show that their homology can be computed in terms of the adjacency matrices, using a chain complex developed by Evans. We show that Matuis HK conjecture holds for the groupoids of single vertex k-graphs which satisfy a mild joint-coprimality condition. We also prove that there is a natural homomorphism from the categorical homology of a k-graph to the homology of its groupoid.



قيم البحث

اقرأ أيضاً

We establish exact sequences in $KK$-theory for graded relative Cuntz-Pimsner algebras associated to nondegenerate $C^*$-correspondences. We use this to calculate the graded $K$-theory and $K$-homology of relative Cuntz-Krieger algebras of directed g raphs for gradings induced by ${0,1}$-valued labellings of their edge sets.
145 - Huaxin Lin , Zhuang Niu 2008
Let $A$ and $C$ be two unital simple C*-algebas with tracial rank zero. Suppose that $C$ is amenable and satisfies the Universal Coefficient Theorem. Denote by ${{KK}}_e(C,A)^{++}$ the set of those $kappa$ for which $kappa(K_0(C)_+setminus{0})subset K_0(A)_+setminus{0}$ and $kappa([1_C])=[1_A]$. Suppose that $kappain {KK}_e(C,A)^{++}.$ We show that there is a unital monomorphism $phi: Cto A$ such that $[phi]=kappa.$ Suppose that $C$ is a unital AH-algebra and $lambda: mathrm{T}(A)to mathrm{T}_{mathtt{f}}(C)$ is a continuous affine map for which $tau(kappa([p]))=lambda(tau)(p)$ for all projections $p$ in all matrix algebras of $C$ and any $tauin mathrm{T}(A),$ where $mathrm{T}(A)$ is the simplex of tracial states of $A$ and $mathrm{T}_{mathtt{f}}(C)$ is the convex set of faithful tracial states of $C.$ We prove that there is a unital monomorphism $phi: Cto A$ such that $phi$ induces both $kappa$ and $lambda.$ Suppose that $h: Cto A$ is a unital monomorphism and $gamma in mathrm{Hom}(Kone(C), aff(A)).$ We show that there exists a unital monomorphism $phi: Cto A$ such that $[phi]=[h]$ in ${KK}(C,A),$ $taucirc phi=taucirc h$ for all tracial states $tau$ and the associated rotation map can be given by $gamma.$ Applications to classification of simple C*-algebras are also given.
208 - Shintaro Nishikawa 2018
We introduce a new method for studying the Baum-Connes conjecture, which we call the direct splitting method. The method can simplify and clarify proofs of some of the known cases of the conjecture. In a separate paper, with J. Brodzki, E. Guentner a nd N. Higson, a similar idea will be used to give a finite-dimensional proof of the Baum-Connes conjecture for groups which act properly and co-compactly on a finite-dimensional CAT(0)-cubical space.
253 - Huaxin Lin 2008
Let $C$ be a unital AH-algebra and $A$ be a unital simple C*-algebra with tracial rank zero. It has been shown that two unital monomorphisms $phi, psi: Cto A$ are approximately unitarily equivalent if and only if $$ [phi]=[psi] {rm in} KL(C,A) and ta ucirc phi=taucirc psi tforal tauin T(A), $$ where $T(A)$ is the tracial state space of $A.$ In this paper we prove the following: Given $kappain KL(C,A)$ with $kappa(K_0(C)_+setminus {0})subset K_0(A)_+setminus {0}$ and with $kappa([1_C])=[1_A]$ and a continuous affine map $lambda: T(A)to T_{mathtt{f}}(C)$ which is compatible with $kappa,$ where $T_{mathtt{f}}(C)$ is the convex set of all faithful tracial states, there exists a unital monomorphism $phi: Cto A$ such that $$ [phi]=kappaandeqn taucirc phi(c)=lambda(tau)(c) $$ for all $cin C_{s.a.}$ and $tauin T(A).$ Denote by ${rm Mon}_{au}^e(C,A)$ the set of approximate unitary equivalence classes of unital monomorphisms. We provide a bijective map $$ Lambda: {rm Mon}_{au}^e (C,A)to KLT(C,A)^{++}, $$ where $KLT(C,A)^{++}$ is the set of compatible pairs of elements in $KL(C,A)^{++}$ and continuous affine maps from $T(A)$ to $T_{mathtt{f}}(C).$ Moreover, we realized that there are compact metric spaces $X$, unital simple AF-algebras $A$ and $kappain KL(C(X), A)$ with $kappa(K_0(C(X))_+setminus{0})subset K_0(A)_+setminus {0}$ for which there is no hm $h: C(X)to A$ so that $[h]=kappa.$
We prove that a minimal second countable ample groupoid has dynamical comparison if and only if its type semigroup is almost unperforated. Moreover, we investigate to what extent a not necessarily minimal almost finite groupoid has an almost unperfor ated type semigroup. Finally, we build a bridge between coarse geometry and topological dynamics by characterizing almost finiteness of the coarse groupoid in terms of a new coarsely invariant property for metric spaces, which might be of independent interest in coarse geometry. As a consequence, we are able to construct new examples of almost finite principal groupoids lacking other desirable properties, such as amenability or even a-T-menability. This behaviour is in stark contrast to the case of principal transformation groupoids associated to group actions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا