ﻻ يوجد ملخص باللغة العربية
We developed a theoretical framework which extends the method of textit{full counting statistics} (FCS) from conventional single channel Kondo screening schemes to multi-channel Kondo paradigm. The developed idea of FCS has been demonstrated considering an example of two-stage Kondo (2SK) model. We analyzed the charge transferred statistics in the strong-coupling regime of a 2SK model using non-equilibrium Keldysh formulation. A bounded value of Fano factor, $1leq Fleq 5/3$, confirmed the cross-over regimes of charge transfered statistics in 2SK effect, from Poissonian to super-Poissonian. An innovative way of measuring transport properties of 2SK effect, by the independent measurements of charge current and noise, has been proposed
We develop a method for calculation of charge transfer statistics of persistent current in nanostructures in terms of the cumulant generating function (CGF) of transferred charge. We consider a simply connected one-dimensional system (a wire) and dev
A mesoscopic Coulomb blockade system with two identical transport channels is studied in terms of full counting statistics. It is found that the average current cannot distinguish the quantum constructive interference from the classical non-interfere
We develop a scheme for the computation of the full-counting statistics of transport described by Markovian master equations with an arbitrary time dependence. It is based on a hierarchy of generalized density operators, where the trace of each opera
The concept of the Kondo box describes a single spin, antiferromagnetically coupled to a quantum dot with a finite level spacing. Here, a Kondo box is formed in a carbon nanotube interacting with a localized electron. We investigate the spins of its
We calculate the distribution of current fluctuations in two simple exclusion models. Although these models are classical, we recover even for small systems such as a simple or a double barrier, the same distibution of current as given by traditionna