ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-threshold bound states of the dipole-dipole interaction

411   0   0.0 ( 0 )
 نشر من قبل Tijs Karman
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the two-body bound states of a model Hamiltonian that describes the interaction between two field-oriented dipole moments. This model has been used extensively in many-body physics of ultracold polar molecules and magnetic atoms, but its few-body physics has been explored less fully. With a hard-wall short-range boundary condition, the dipole-dipole bound states are universal and exhibit a complicated pattern of avoided crossings between states of different character. For more realistic Lennard-Jones short-range interactions, we consider parameters representative of magnetic atoms and polar molecules. For magnetic atoms, the bound states are dominated by the Lennard-Jones potential, and the perturbative dipole-dipole interaction is suppressed by the special structure of van der Waals bound states. For polar molecules, we find a dense manifold of dipole-dipole bound states with many avoided crossings as a function of induced dipole or applied field, similar to those for hard-wall boundary conditions. This universal pattern of states may be observable spectroscopically for pairs of ultracold polar molecules.



قيم البحث

اقرأ أيضاً

We report on the local control of the transition frequency of a spin-$1/2$ encoded in two Rydberg levels of an individual atom by applying a state-selective light shift using an addressing beam. With this tool, we first study the spectrum of an eleme ntary system of two spins, tuning it from a non-resonant to a resonant regime, where bright (superradiant) and dark (subradiant) states emerge. We observe the collective enhancement of the microwave coupling to the bright state. We then show that after preparing an initial single spin excitation and letting it hop due to the spin-exchange interaction, we can freeze the dynamics at will with the addressing laser, while preserving the coherence of the system. In the context of quantum simulation, this scheme opens exciting prospects for engineering inhomogeneous XY spin Hamiltonians or preparing spin-imbalanced initial states.
We study how the radiative properties of a dense ensemble of atoms can be modified when they are placed near or between metallic or dielectric surfaces. If the average separation between the atoms is comparable or smaller than the wavelength of the s cattered photons, the coupling to the radiation field induces long-range coherent interactions based on the interatomic exchange of virtual photons. Moreover, the incoherent scattering of photons back to the electromagnetic field is known to be a many-body process, characterized by the appearance of superradiant and subradiant emission modes. By changing the radiation field properties, in this case by considering a layered medium where the atoms are near metallic or dielectric surfaces, these scattering properties can be dramatically modified. We perform a detailed study of these effects, with focus on experimentally relevant parameter regimes. We finish with a specific application in the context of quantum information storage, where the presence of a nearby surface is shown to increase the storage time of an atomic excitation that is transported across a one-dimensional chain.
We report the all-optical production of a Rb87 Bose-Einstein condensate (BEC) in a simple 1.06 micron dipole trap experiment. We load a single beam dipole trap directly from a magneto-optic trap (MOT) using an optimized loading sequence. After evapor ation in the single beam, a second crossed beam is used for compression. The intensity in both beams is then reduced for evaporation to BEC. We obtain a BEC with 3.5E4 atoms after 3 seconds of total evaporation time. We also give a detailed account of the thermal distribution in cross beam traps. This account highlights the possible difficulties in using shorter wavelength lasers to condense all optically.
The dipole blockade phenomenon is a direct consequence of strong dipole-dipole interaction, where only single atom can be excited because the doubly excited state is shifted out of resonance. The corresponding two-body entanglement with non-zero conc urrence induced by the dipole blockade effect is an important resource for quantum information processing. Here, we propose a novel physical mechanism for realizing dipole blockade without the dipole-dipole interaction, where two qubits coupled to a cavity, are driven by a coherent field. By suitably chosen placements of the qubits in the cavity and by adjusting the relative decay strengths of the qubits and cavity field, we kill many unwanted excitation pathways. This leads to dipole blockade. In addition, we show that these two qubits are strongly entangled over a broad regime of the system parameters. We show that a strong signature of this dipole blockade is the bunching property of the cavity photons which thus provides a possible measurement of the dipole blockade. We present dynamical features of the dipole blockade without dipole-dipole interaction. The proposal presented in this work can be realized not only in traditional cavity QED, but also in non-cavity topological photonics involving edge modes.
We measure the angular dependence of the resonant dipole-dipole interaction between two individual Rydberg atoms with controlled relative positions. By applying a combination of static electric and magnetic fields on the atoms, we demonstrate the pos sibility to isolate a single interaction channel at a Forster resonance, that shows a well-defined angular dependence. We first identify spectroscopically the Forster resonance of choice and we then perform a direct measurement of the interaction strength between the two atoms as a function of the angle between the internuclear axis and the quantization axis. Our results show good agreement with the expected angular dependence $propto(1-3cos^2theta)$, and represent an important step towards quantum state engineering in two-dimensional arrays of individual Rydberg atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا