ﻻ يوجد ملخص باللغة العربية
Recent predictions and experimental observations of high Tc superconductivity in hydrogen-rich materials at very high pressures are driving the search for superconductivity in the vicinity of room temperature. We have developed a novel preparation technique that is optimally suited for megabar pressure syntheses of superhydrides using pulsed laser heating while maintaining the integrity of sample-probe contacts for electrical transport measurements to 200 GPa. We detail the synthesis and characterization, including four-probe electrical transport measurements, of lanthanum superhydride samples that display a significant drop in resistivity on cooling beginning around 260 K and pressures of 190 GPa. Additional measurements on two additional samples synthesized the same way show resistance drops beginning as high as 280 K at these pressures. The loss of resistance at these high temperatures is not observed in control experiments on pure La as well as in partially transformed samples at these pressures, and x-ray diffraction as a function of temperature on the superhydride reveal no structural changes on cooling. We infer that the resistance drop is a signature of the predicted room-temperature superconductivity in LaH10, in good agreement with density functional structure search and BCS theory calculations.
The use of high pressure to realize superconductivity in the vicinity of room temperature has a long history, much of it focused on achieving this in hydrogen rich materials. This paper provides a brief overview of the work presented at this May 2018
Lanthanum (La) is the first member of the rare-earth series of elements that has recently raised considerable interest because of its unique high-Tc superhydride LaH10. Although several studies have found superconductivity and phase transitions in me
The flourishing metal clathrate superhydrides is a class of recently discovered materials that possess record breaking near-room-temperature superconductivity at high pressures, because hydrogen atoms behave similarly to the atomic metallic hydrogen.
Recent theoretical and experimental studies of hydrogen-rich materials at megabar pressures (i.e., >100 GPa) have led to the discovery of very high-temperature superconductivity in these materials. Lanthanum superhydride LaH$_{10}$ has been of partic
Polyhydrides offer intriguing perspectives as high-temperature superconductors. Here we report the high-pressure synthesis of a series of lanthanum-yttrium ternary hydrides: cubic hexahydride $(La,Y)H_{6}$ with a critical temperature $T_{C}$ = 237 +/