ﻻ يوجد ملخص باللغة العربية
Convolutional Neural Networks (CNNs) are becoming increasingly popular due to their superior performance in the domain of computer vision, in applications such as objection detection and recognition. However, they demand complex, power-consuming hardware which makes them unsuitable for implementation on low-power mobile and embedded devices. In this paper, a description and comparison of various techniques is presented which aim to mitigate this problem. This is primarily achieved by quantizing the floating-point weights and activations to reduce the hardware requirements, and adapting the training and inference algorithms to maintain the networks performance.
Applications that generate huge amounts of data in the form of fast streams are becoming increasingly prevalent, being therefore necessary to learn in an online manner. These conditions usually impose memory and processing time restrictions, and they
We introduce a convolutional recurrent neural network (CRNN) for music tagging. CRNNs take advantage of convolutional neural networks (CNNs) for local feature extraction and recurrent neural networks for temporal summarisation of the extracted featur
Due to the nonlinearity of artificial neural networks, designing topologies for deep convolutional neural networks (CNN) is a challenging task and often only heuristic approach, such as trial and error, can be applied. An evolutionary algorithm can s
The state-of-the-art (SOTA) for mixed precision training is dominated by variants of low precision floating point operations, and in particular, FP16 accumulating into FP32 Micikevicius et al. (2017). On the other hand, while a lot of research has al
Optimization for deep networks is currently a very active area of research. As neural networks become deeper, the ability in manually optimizing the network becomes harder. Mini-batch normalization, identification of effective respective fields, mome