ﻻ يوجد ملخص باللغة العربية
Analysing the kinematics of filamentary molecular clouds is a crucial step towards understanding their role in the star formation process. Therefore, we study the kinematics of 283 filament candidates in the inner Galaxy, that were previously identified in the ATLASGAL dust continuum data. The $^{13}$CO(2 - 1) and C$^{18}$O(2 - 1) data of the SEDIGISM survey (Structure, Excitation, and Dynamics of the Inner Galactic Inter Stellar Medium) allows us to analyse the kinematics of these targets and to determine their physical properties at a resolution of 30 arcsec and 0.25 km/s. To do so, we developed an automated algorithm to identify all velocity components along the line-of-sight correlated with the ATLASGAL dust emission, and derive size, mass, and kinematic properties for all velocity components. We find two-third of the filament candidates are coherent structures in position-position-velocity space. The remaining candidates appear to be the result of a superposition of two or three filamentary structures along the line-of-sight. At the resolution of the data, on average the filaments are in agreement with Plummer-like radial density profiles with a power-law exponent of p = 1.5 +- 0.5, indicating that they are typically embedded in a molecular cloud and do not have a well-defined outer radius. Also, we find a correlation between the observed mass per unit length and the velocity dispersion of the filament of $m sim sigma_v^2$. We show that this relation can be explained by a virial balance between self-gravity and pressure. Another possible explanation could be radial collapse of the filament, where we can exclude infall motions close to the free-fall velocity.
By combining two surveys covering a large fraction of the molecular material in the Galactic disk we investigate the role the spiral arms play in the star formation process. We have matched clumps identified by ATLASGAL with their parental GMCs as id
The structure formation of the dense interstellar material and the fragmentation of clumps into cores is a fundamental step to understand how stars and stellar clusters form. We aim to establish a statistical view of clump fragmentation at sub-parsec
We use the 13CO(2-1) emission from the SEDIGISM high-resolution spectral-line survey of the inner Galaxy, to extract the molecular cloud population with a large dynamic range in spatial scales, using the SCIMES algorithm. This work compiles a cloud c
The origin and life-cycle of molecular clouds are still poorly constrained, despite their importance for understanding the evolution of the interstellar medium. We have carried out a systematic, homogeneous, spectroscopic survey of the inner Galactic
The SEDIGISM (Structure, Excitation and Dynamics of the Inner Galactic Interstellar Medium) survey used the APEX telescope to map 84 deg^2 of the Galactic plane between l = -60 deg and l = +31 deg in several molecular transitions, including 13CO(2-1)