Majorana zero modes are a promising platform for topologically protected quantum information processing. Their non-Abelian nature, which is key for performing quantum gates, is most prominently exhibited through braiding. While originally formulated for two-dimensional (2d) systems, it has been shown that braiding can also be realized using one-dimensional (1d) wires by forming an essentially two-dimensional network. Here, we show that in driven systems far from equilibrium, one can do away with the second spatial dimension altogether by instead using quasienergy as the second dimension. To realize this, we use a Floquet topological superconductor which can exhibit Majorana modes at two special eigenvalues of the evolution operator, 0 and pi, and thus can realize four Majorana modes in a single, driven quantum wire. We describe and numerically evaluate a protocol that realizes a topologically protected exchange of two Majorana zero modes in a single wire by adiabatically modulating the Floquet drive and using the pi modes as auxiliary degrees of freedom.