ﻻ يوجد ملخص باللغة العربية
If a full band gap closes and then reopens when we continuously deform a periodic system while keeping its symmetry, a topological phase transition usually occurs. A common model demonstrating such a topological phase transition in condensed matter physics is the Su-Schrieffer-Heeger (SSH) model. As well known, two distinct topological phases emerge when the intracell hopping is tuned from smaller to larger with respect to the intercell hopping in the model. The former case is topologically trivial, while the latter case is topologically non-trivial. Here, we design a 1D periodic acoustic system in exact analogy to the SSH model. The unit cell of the acoustic system is composed of two resonators and two junction tubes connecting them. We show that the topological phase transition happens in our acoustic analog when we tune the radii of the junction tubes which control the intercell and intracell hoppings. The topological phase transition is characterized by the abrupt change of the geometric Zak phase. The topological interface states between non-trivial and trivial phases of our acoustic analog are experimentally measured, and the results agree very well with the numerical values. Further, we show that topologically non-trivial phases of our acoustic analog of the SSH model can support edge states, on which the discussion is absent in previous works about topological acoustics. The edge states are robust against localized defects and perturbations.
In this work, we experimentally report the acoustic realization the two-dimensional (2D) Su-Schrieffer-Heeger (SSH) model in a simple network of air channels. We analytically study the steady state dynamics of the system using a set of discrete equat
Topological physics strongly relies on prototypical lattice model with particular symmetries. We report here on a theoretical and experimental work on acoustic waveguides that is directly mapped to the one-dimensional Su-Schrieffer-Heeger chiral mode
We demonstrate a platform for synthetic dimensions based on coupled Rydberg levels in ultracold atoms, and we implement the single-particle Su-Schrieffer-Heeger (SSH) Hamiltonian. Rydberg levels are interpreted as synthetic lattice sites, with tunnel
We propose a realization of topological quantum interference in a pumped non-Hermitian Su-Schrieffer-Heeger lattice that can be implemented by creation and coherent control of excitonic states of trapped neutral atoms. Our approach is based on realiz
We investigate the Su-Schrieffer-Heeger model in presence of an injection and removal of particles, introduced via a master equation in Lindblad form. It is shown that the dynamics of the density matrix follows the predictions of calculations in whic