ﻻ يوجد ملخص باللغة العربية
Information technology depends on how one can control and manipulate signals accurately and quickly. Transistors are at the core of modern technology and are based on electron charges. But as the device dimension shrinks, heating becomes a major problem. The spintronics explores the spin degree of electrons and thus bypasses the heat, at least in principle. For this reason, spin-based technology offers a possible solution. In this review, we survey some of latest developments in all-optical switching (AOS), where ultrafast laser pulses are able to reverse spins from one direction to the other deterministically. But AOS only occurs in a special group of magnetic samples and within a narrow window of laser parameters. Some samples need multiple pulses to switch spins, while others need a single-shot pulse. To this end, there are several models available, but the underlying mechanism is still under debate. This review is different from other prior reviews in two aspects. First, we sacrifice the completeness of reviewing existing studies, while focusing on a limited set of experimental results that are highly reproducible in different labs and provide actual switched magnetic domain images. Second, we extract the common features from existing experiments that are critical to AOS, without favoring a particular switching mechanism. We emphasize that given the limited experimental data, it is really premature to identify a unified mechanism. We compare these features with our own model prediction, without resorting to a phenomenological scheme. We hope that this review serves the broad readership well.
We employ an atomic spin model and present a systematic investigation from a single spin to a large system of over a million spins. To have an efficient spin switching, the electron initial momentum direction must closely follow the spins orientation
Interest in all-optical spin switching (AOS) is growing rapidly. The recent discovery of AOS in Mn$_2$RuGa provides a much needed clean case of crystalline ferrimagnets for theoretical simulations. Here, we attempt to simulate it using the state-of-t
Transmission and reflectivity of La_x Ca_14-x Cu_24 O_41 two-leg spin-1/2 ladders were measured in the mid-infrared regime between 500 and 12000 1/cm. This allows us to determine the optical conductivity sigma_1 directly and with high sensitivity. He
We report all-optical switching due to state-filling in quantum dots (QDs) within a Mach-Zehnder Interferometric (MZI) switch. The MZI was fabricated using InGaAsP/InP waveguides containing a single layer of InAs/InP QDs. A 1530-1570 nm probe beam is
The interaction of interfacial water with graphitic carbon at the atomic scale is studied as a function of the hydrophobicity of epitaxial graphene. High resolution X-ray reflectivity shows that the graphene-water contact angle is controlled by the a