ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the Neutron Star Radius with Joint Gravitational-Wave and Short Gamma-Ray Burst Observations of Neutron Star-Black Hole Coalescing Binaries

70   0   0.0 ( 0 )
 نشر من قبل Stefano Ascenzi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coalescing neutron star (NS)-black hole (BH) binaries are promising sources of gravitational-waves (GWs) to be detected within the next few years by current GW observatories. If the NS is tidally disrupted outside the BH innermost stable circular orbit, an accretion torus may form, and this could eventually power a short gamma-ray burst (SGRB). The observation of an SGRB in coincidence with gravitational radiation from an NS-BH coalescence would confirm the association between the two phenomena and also give us new insights on NS physics. We present here a new method to measure NS radii and thus constrain the NS equation of state using joint SGRB and GW observations of NS-BH mergers. We show that in the event of a joint detection with realistic GW signal-to-noise ratio (S/N) of 10, the NS radius can be constrained to $lesssim,$20% accuracy at 90% confidence.



قيم البحث

اقرأ أيضاً

142 - J. Clark , H. Evans , S. Fairhurst 2014
We present a detailed evaluation of the expected rate of joint gravitational-wave and short gamma-ray burst (GRB) observations over the coming years. We begin by evaluating the improvement in distance sensitivity of the gravitational wave search that arises from using the GRB observation to restrict the time and sky location of the source. We argue that this gives a 25% increase in sensitivity when compared to an all-sky, all-time search, corresponding to more than doubling the number of detectable gravitational wave signals associated with GRBs. Using this, we present the expected rate of joint observations with the advanced LIGO and Virgo instruments, taking into account the expected evolution of the gravitational wave detector network. We show that in the early advanced gravitational wave detector observing runs, from 2015-2017, there is only a small chance of a joint observation. However, as the detectors approach their design sensitivities, there is a good chance of joint observations provided wide field GRB satellites, such as Fermi and the Interplanetary Network, continue operation. The rate will also depend critically upon the nature of the progenitor, with neutron star--black hole systems observable to greater distances than double neutron star systems. The relative rate of binary mergers and GRBs will depend upon the jet opening angle of GRBs. Consequently, joint observations, as well as accurate measurement of both the GRB rate and binary merger rates, will allow for an improved estimation of the opening angle of GRBs.
182 - Chang Liu , Lijing Shao 2021
The detections of gravitational waves (GWs) from binary neutron star (BNS) systems and neutron star--black hole (NSBH) systems provide new insights into dense matter properties in extreme conditions and associated high-energy astrophysical processes. However, currently information about NS equation of state (EoS) is extracted with very limited precision. Meanwhile, the fruitful results from the serendipitous discovery of the $gamma$-ray burst alongside GW170817 show the necessity of early warning alerts. Accurate measurements of the matter effects and sky location could be achieved by joint GW detection from space and ground. In our work, based on two example cases, GW170817 and GW200105, we use the Fisher information matrix analysis to investigate the multiband synergy between the space-borne decihertz GW detectors and the ground-based Einstein Telescope (ET). We specially focus on the parameters pertaining to spin-induced quadrupole moment, tidal deformability, and sky localization. We demonstrate that, (i) only with the help of multiband observations can we constrain the quadrupole parameter; and (ii) with the inclusion of decihertz GW detectors, the errors of tidal deformability would be a few times smaller, indicating that many more EoSs could be excluded; (iii) with the inclusion of ET, the sky localization improves by about an order of magnitude. Furthermore, we have systematically compared the different limits from four planned decihertz detectors and adopting two widely used waveform models.
The most popular model for short gamma-ray bursts (sGRBs) involves the coalescence of binary neutron stars. Because the progenitor is actually hidden from view, we must consider under which circumstances such merging systems are capable of producing a successful sGRB. Soon after coalescence, winds are launched from the merger remnant. In this paper, we use realistic wind profiles derived from global merger simulations in order to investigate the interaction of sGRB jets with these winds using numerical simulations. We analyze the conditions for which these axisymmetric winds permit relativistic jets to breakout and produce a sGRB. We find that jets with luminosities comparable to those observed in sGRBs are only successful when their half-opening angles are below ~20{deg}. This jet collimation mechanism leads to a simple physical interpretation of the luminosities and opening angles inferred for sGRBs. If wide, low luminosity jets are observed, they might be indicative of a different progenitor avenue such as the merger of a neutron star with a black hole. We also use the observed durations of sGRB to place constraints on the lifetime of the wind phase, which is determined by the time it takes the jet to breakout. In all cases we find that the derived limits argue against completely stable remnants for binary neutron star mergers that produce sGRBs.
Gravitational waves from the merger of two neutron stars cannot be easily distinguished from those produced by a comparable-mass mixed binary in which one of the companions is a black hole. Low-mass black holes are interesting because they could form in the aftermath of the coalescence of two neutron stars, from the collapse of massive stars, from matter overdensities in the primordial Universe, or as the outcome of the interaction between neutron stars and dark matter. Gravitational waves carry the imprint of the internal composition of neutron stars via the so-called tidal deformability parameter, which depends on the stellar equation of state and is equal to zero for black holes. We present a new data analysis strategy powered by Bayesian inference and machine learning to identify mixed binaries, hence low-mass black holes, using the distribution of the tidal deformability parameter inferred from gravitational-wave observations.
Short gamma-ray bursts (SGRBs) are now known to be the product of the merger of two compact objects. However, two possible formation channels exist: neutron star -- neutron star (NS -- NS) or NS -- black hole (BH). The landmark SGRB 170817A provided evidence for the NS -- NS channel, thanks to analysis of its gravitational wave signal. We investigate the complete population of SGRBs with an associated redshift (39 events), and search for any divisions that may indicate that a NS -- BH formation channel also contributes. Though no conclusive dichotomy is found, we find several lines of evidence that tentatively support the hypothesis that SGRBs with extended emission (EE; 7 events) constitute the missing merger population: they are unique in the large energy band-sensitivity of their durations, and have statistically distinct energies and host galaxy offsets when compared to regular (non-EE) SGRBs. If this is borne out via future gravitational wave detections it will conclusively disprove the magnetar model for SGRBs. Furthermore, we identify the first statistically significant anti-correlation between the offsets of SGRBs from their host galaxies and their prompt emission energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا