ﻻ يوجد ملخص باللغة العربية
We derive the optimal proposal density for Approximate Bayesian Computation (ABC) using Sequential Monte Carlo (SMC) (or Population Monte Carlo, PMC). The criterion for optimality is that the SMC/PMC-ABC sampler maximise the effective number of samples per parameter proposal. The optimal proposal density represents the optimal trade-off between favoring high acceptance rate and reducing the variance of the importance weights of accepted samples. We discuss two convenient approximations of this proposal and show that the optimal proposal density gives a significant boost in the expected sampling efficiency compared to standard kernels that are in common use in the ABC literature, especially as the number of parameters increases.
We propose a Bayesian approach, called the posterior spectral embedding, for estimating the latent positions in random dot product graphs, and prove its optimality. Unlike the classical spectral-based adjacency/Laplacian spectral embedding, the poste
Approximate Bayesian computation (ABC) is computationally intensive for complex model simulators. To exploit expensive simulations, data-resampling via bootstrapping can be employed to obtain many artificial datasets at little cost. However, when usi
In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive point estimation, the construction of ad
We study a nonparametric Bayesian approach to estimation of the volatility function of a stochastic differential equation driven by a gamma process. The volatility function is modelled a priori as piecewise constant, and we specify a gamma prior on i
Approximate Bayesian computation methods are useful for generative models with intractable likelihoods. These methods are however sensitive to the dimension of the parameter space, requiring exponentially increasing resources as this dimension grows.