Recursive matrices are ubiquitous in combinatorics, which have been extensively studied. We focus on the study of the sums of $2times 2$ minors of certain recursive matrices, the alternating sums of their $2times 2$ minors, and the sums of their $2times 2$ permanents. We obtain some combinatorial identities related to these sums, which generalized the work of Sun and Ma in [{it Electron. J. Combin. 2014}] and [{it European J. Combin. 2014}]. With the help of the computer algebra package {tt HolonomicFunctions}, we further get some new identities involving Narayana polynomials.