ﻻ يوجد ملخص باللغة العربية
Tensoring finite pointed simplicial sets with commutative ring spectra yields important homology theories such as (higher) topological Hochschild homology and torus homology. We prove several structural properties of these constructions relating $X otimes (-)$ to $Sigma X otimes (-)$ and we establish splitting results. This allows us, among other important examples, to determine $THH^{[n]}_*(mathbb{Z}/p^m; mathbb{Z}/p)$ for all $n geq 1$ and for all $m geq 2$.
Let $f:Gto mathrm{Pic}(R)$ be a map of $E_infty$-groups, where $mathrm{Pic}(R)$ denotes the Picard space of an $E_infty$-ring spectrum $R$. We determine the tensor $Xotimes_R Mf$ of the Thom $E_infty$-$R$-algebra $Mf$ with a space $X$; when $X$ is th
We define a relative version of the Loday construction for a sequence of commutative S-algebras $A rightarrow B rightarrow C$ and a pointed simplicial subset $Y subset X$. We use this to construct several spectral sequences for the calculation of hig
We apply an announced result of Blumberg-Cohen-Schlichtkrull to reprove (under restricted hypotheses) a theorem of Mahowald: the connective real and complex K-theory spectra are not Thom spectra.
The main result of this paper is the computation of TR^n_{alpha}(F_p;p) for alpha in R(S^1). These R(S^1)-graded TR-groups are the equivariant homotopy groups naturally associated to the S^1-spectrum THH(F_p), the topological Hochschild S^1-spectrum.
If $G$ is a compact connected Lie group and $T$ is a maximal torus, we give a wedge decomposition of $Sigma G/T$ by identifying families of idempotents in cohomology. This is used to give new information on the self-maps of $G/T$.