ﻻ يوجد ملخص باللغة العربية
Obtaining 3D information from a single X-ray exposure at high-brilliance sources, such as X-ray free-electron lasers (XFELs) [1] or diffraction-limited storage rings [2], allows the study of fast dynamical processes in their native environment. However, current X-ray 3D methodologies are either not compatible with single-shot approaches because they rely on multiple exposures, such as confocal microscopy [3, 4] and tomography [5, 6]; or they record a single projection per pulse [7] and are therefore restricted to approximately two-dimensional objects [8]. Here we propose and verify experimentally a novel imaging approach named X-ray multi-projection imaging (XMPI), which simultaneously acquires several projections without rotating the sample at significant tomographic angles. When implemented at high-brilliance sources it can provide volumetric information using a single pulse. Moreover, XMPI at MHz repetition XFELs could allow a way to record 3D movies of deterministic or stochastic natural processes in the micrometer to nanometer resolution range, and at time scales from microseconds down to femtoseconds.
Full coherent soft X-ray attosecond pulses are now available through high-order harmonic generation (HHG); however, its insufficient output energy hinders various applications, such as attosecond-scale soft X-ray nonlinear experiments, the seeding of
A well-characterised wavefront is important for many X-ray free-electron laser (XFEL) experiments, especially for single-particle imaging (SPI), where individual bio-molecules randomly sample a nanometer-region of highly-focused femtosecond pulses. W
In this paper, we present a new method to generate an instantaneous volumetric image using a single x-ray projection. To fully extract motion information hidden in projection images, we partitioned a projection image into small patches. We utilized a
For conventional imaging, the imaging resolution limit is given by the Rayleigh criterion. Exploiting the prior knowledge of imaging objects sparsity and fixed optical system, imaging beyond the conventional Rayleigh limit, which is backed up by nume
Multispectral imaging plays an important role in many applications from astronomical imaging, earth observation to biomedical imaging. However, the current technologies are complex with multiple alignment-sensitive components, predetermined spatial a