ﻻ يوجد ملخص باللغة العربية
We show that the Wannier obstruction and the fragile topology of the nearly flat bands in twisted bilayer graphene at magic angle are manifestations of the nontrivial topology of two-dimensional real wave functions characterized by the Euler class. To prove this, we examine the generic band topology of two dimensional real fermions in systems with space-time inversion $I_{ST}$ symmetry. The Euler class is an integer topological invariant classifying real two band systems. We show that a two-band system with a nonzero Euler class cannot have an $I_{ST}$-symmetric Wannier representation. Moreover, a two-band system with the Euler class $e_{2}$ has band crossing points whose total winding number is equal to $-2e_2$. Thus the conventional Nielsen-Ninomiya theorem fails in systems with a nonzero Euler class. We propose that the topological phase transition between two insulators carrying distinct Euler classes can be described in terms of the pair creation and annihilation of vortices accompanied by winding number changes across Dirac strings. When the number of bands is bigger than two, there is a $Z_{2}$ topological invariant classifying the band topology, that is, the second Stiefel Whitney class ($w_2$). Two bands with an even (odd) Euler class turn into a system with $w_2=0$ ($w_2=1$) when additional trivial bands are added. Although the nontrivial second Stiefel-Whitney class remains robust against adding trivial bands, it does not impose a Wannier obstruction when the number of bands is bigger than two. However, when the resulting multi-band system with the nontrivial second Stiefel-Whitney class is supplemented by additional chiral symmetry, a nontrivial second-order topology and the associated corner charges are guaranteed.
Fractional Chern insulators (FCIs) are lattice analogues of fractional quantum Hall states that may provide a new avenue toward manipulating non-abelian excitations. Early theoretical studies have predicted their existence in systems with energetical
In the past two years, magic-angle twisted bilayer graphene has emerged as a uniquely versatile experimental platform that combines metallic, superconducting, magnetic and insulating phases in a single crystal. In particular the ability to tune the s
Magic-angle twisted bilayer graphene (MtBLG) has proven to be an extremely promising new platform to realize and study a host of emergent quantum phases arising from the strong correlations in its narrow bandwidth flat band. In this regard, thermal t
Interactions among electrons and the topology of their energy bands can create novel quantum phases of matter. Most topological electronic phases appear in systems with weak electron-electron interactions. The instances where topological phases emerg
Twisted bilayer graphene with a twist angle of around 1.1{deg} features a pair of isolated flat electronic bands and forms a strongly correlated electronic platform. Here, we use scanning tunneling microscopy to probe local properties of highly tunab