ترغب بنشر مسار تعليمي؟ اضغط هنا

Disorder-sensitive node-like small gap in FeSe

66   0   0.0 ( 0 )
 نشر من قبل Yue Sun
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the band structure, nematic state and superconducting gap structure of two selected FeSe single crystals containing different amount of disorder. Transport and angle-resolved photoemission spectroscopy measurements show that the small amount of disorder has little effect to the band structure and the nematic state of FeSe. However, temperature and magnetic field dependencies of specific heat for the two samples are quite different. Wave-vector-dependent gap structure are obtained from the three dimensional field-angle-resolved specific heat measurements. A small gap with two vertical-line nodes or gap minima along the $k_z$ direction is found only in the sample with higher quality. Such symmetry-unprotected nodes or gap minima are found to be smeared out by small amount of disorder, and the gap becomes isotropic in the sample of lower quality. Our study reveals that the reported controversy on the gap structure of FeSe is due to the disorder-sensitive node-like small gap.



قيم البحث

اقرأ أيضاً

125 - Y. Zhang , J. J. Lee , R. G. Moore 2015
Fermi surface topology and pairing symmetry are two pivotal characteristics of a superconductor. Superconductivity in one monolayer (1ML) FeSe thin film has attracted great interest recently due to its intriguing interfacial properties and possibly h igh superconducting transition temperature (Tc) over 77 K. Here, we report high-resolution measurements of the Fermi surface and superconducting gaps in 1ML FeSe using angle-resolved photoemission spectroscopy (ARPES). Two ellipse-like electron pockets are clearly resolved overlapping with each other at the Brillouin zone corner. The superconducting gap is nodeless but moderately anisotropic, which put strong constraints on determining the pairing symmetry. The gap maxima locate along the major axis of ellipse, which cannot be explained by a single d-wave, extended s-wave, or s$pm$ gap function. Four gap minima are observed at the intersection of electron pockets suggesting the existence of either a sign change or orbital-dependent pairing in 1ML FeSe.
140 - A. Yamasaki , Y. Matsui , S. Imada 2010
We have investigated the electronic structures of recently discovered superconductor FeSe by soft-x-ray and hard-x-ray photoemission spectroscopy with high bulk sensitivity. The large Fe 3d spectral weight is located in the vicinity of the Fermi leve l (EF), which is demonstrated to be a coherent quasi-particle peak. Compared with the results of the band structure calculation with local-density approximation, Fe 3d band narrowing and the energy shift of the band toward EF are found, suggesting an importance of the electron correlation effect in FeSe. The self energy correction provides the larger mass enhancement value (Z^-1=3.6) than in Fe-As superconductors and enables us to separate a incoherent part from the spectrum. These features are quite consistent with the results of recent dynamical mean-field calculations, in which the incoherent part is attributed to the lower Hubbard band.
We use high-resolution angle-resolved photoemission spectroscopy to map the three-dimensional momentum dependence of the superconducting gap in FeSe. We find that on both the hole and electron Fermi surfaces, the magnitude of the gap follows the dist ribution of $d_{yz}$ orbital weight. Furthermore, we theoretically determine the momentum dependence of the superconducting gap by solving the linearized gap equation using a tight binding model which quantitatively describes both the experimental band dispersions and orbital characters. By considering a Fermi surface only including one electron pocket, as observed spectroscopically, we obtain excellent agreement with the experimental gap structure. Our finding of a scaling between the superconducting gap and the $d_{yz}$ orbital weight supports the interpretation of superconductivity mediated by spin-fluctuations in FeSe.
Low-temperature electrical and thermal transport, magnetic penetration depth, and heat capacity measurements were performed on single crystals of the actinide superconductor UTe2 to determine the structure of the superconducting energy gap. Heat tran sport measurements performed with currents directed along both crystallographic a- and b-axes reveal a vanishingly small residual fermionic component of the thermal conductivity. The magnetic field dependence of the residual term follows a rapid, quasi-linear increase consistent with the presence of nodal quasiparticles, rising toward the a-axis upper critical field where the Wiedemann-Franz law is recovered. Together with a quadratic temperature dependence of the magnetic penetration depth up to T/T_c=0.3, these measurements provide evidence for an unconventional spin-triplet superconducting order parameter with point nodes. Millikelvin specific heat measurements performed on the same crystals used for thermal transport reveal an upturn below 300 mK that is well described by a divergent quantum-critical contribution to the density of states (DOS). Modeling this contribution with a T^{-1/3} power law allows restoration of the full entropy balance in the superconducting state and a resultant cubic power law for the electronic DOS below T_c, consistent with the point-node gap structure determined by thermal conductivity and penetration depth measurements.
101 - Nan Zhou , Yue Sun , C. Y. Xi 2021
When exposed to high magnetic fields, certain materials manifest an exotic superconducting (SC) phase that attracts considerable attention. A proposed explanation of the origin of the high-field phase is the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) sta te. This state is characterized by inhomogeneous superconductivity, where the Cooper pairs have finite center-of-mass momenta. Recently, the high-field phase has been observed in FeSe, and it was deemed to originate from the FFLO state. Here, we synthesized FeSe single crystals with different levels of disorders. The level of disorder is expressed by the ratio of the mean free path to the coherence length and ranges between 35 and 1.2. The upper critical field $B_{rm{c}2}$ was systematically studied over a wide range of temperatures, which went as low as $sim$ 0.5 K, and magnetic fields, which went up to $sim$ 38 T along the $c$ axis and in the $ab$ plane. In the high-field region parallel to the $ab$ plane, an unusual SC phase was confirmed in all the crystals, and the phase was found to be robust to disorders. This result suggests that the high-filed SC state in FeSe may not be a FFLO state, which should be sensitive to disorders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا