ﻻ يوجد ملخص باللغة العربية
In this note, we prove a Trudinger-Moser inequality for conical metric in the unit ball. Precisely, let $mathbb{B}$ be the unit ball in $mathbb{R}^N$ $(Ngeq 2)$, $p>1$, $g=|x|^{frac{2p}{N}beta}(dx_1^2+cdots+dx_N^2)$ be a conical metric on $mathbb{B}$, and $lambda_p(mathbb{B})=infleft{int_mathbb{B}| abla u|^Ndx: uin W_0^{1,N}(mathbb{B}),,int_mathbb{B}|u|^pdx=1right}$. We prove that for any $betageq 0$ and $alpha<(1+frac{p}{N}beta)^{N-1+frac{N}{p}}lambda_p(mathbb{B})$, there exists a constant $C$ such that for all radially symmetric functions $uin W_0^{1,N}(mathbb{B})$ with $int_mathbb{B}| abla u|^Ndx-alpha(int_mathbb{B}|u|^p|x|^{pbeta}dx)^{N/p}leq 1$, there holds $$int_mathbb{B}e^{alpha_N(1+frac{p}{N}beta)|u|^{frac{N}{N-1}}}|x|^{pbeta}dxleq C,$$ where $|x|^{pbeta}dx=dv_g$, $alpha_N=Nomega_{N-1}^{1/(N-1)}$, $omega_{N-1}$ is the area of the unit sphere in $mathbb{R}^N$; moreover, extremal functions for such inequalities exist. The case $p=N$, $-1<beta<0$ and $alpha=0$ was considered by Adimurthi-Sandeep cite{A-S}, while the case $p=N=2$, $betageq 0$ and $alpha=0$ was studied by de Figueiredo-do O-dos Santos cite{F-do-dos}.
We establish the Trudinger-Moser inequality on weighted Sobolev spaces in the whole space, and for a class of quasilinear elliptic operators in radial form of the type $displaystyle Lu:=-r^{-theta}(r^{alpha}vert u(r)vert^{beta}u(r))$, where $theta, b
We give a new proof of the almost sharp Moser-Trudinger inequality on compact Riemannian manifolds based on the sharp Moser inequality on Euclidean spaces. In particular we can lower the smoothness requirement of the metric and apply the same approac
Wang and Ye conjectured in [22]: Let $Omega$ be a regular, bounded and convex domain in $mathbb{R}^{2}$. There exists a finite constant $C({Omega})>0$ such that [ int_{Omega}e^{frac{4pi u^{2}}{H_{d}(u)}}dxdyle C(Omega),;;forall uin C^{infty}_{0}(Om
Trudinger-Moser inequality is a substitute to the (forbidden) critical Sobolev embedding, namely the case where the scaling corresponds to $L^infty$. It is well known that the original form of the inequality with the sharp exponent (proved by Moser) fails on the whole plane, but a few modifie
A classical result of Aubin states that the constant in Moser-Trudinger-Onofri inequality on $mathbb{S}^{2}$ can be imporved for furnctions with zero first order moments of the area element. We generalize it to higher order moments case. These new in