ﻻ يوجد ملخص باللغة العربية
Let $G = (V, E)$ be a finite simple undirected graph without $K_2$ components. A bijection $f : E rightarrow {1, 2,cdots, |E|}$ is called a {bf local antimagic labeling} if for any two adjacent vertices $u$ and $v$, they have different vertex sums, i.e. $w(u) eq w(v)$, where the vertex sum $w(u) = sum_{e in E(u)} f(e)$, and $E(u)$ is the set of edges incident to $u$. Thus any local antimagic labeling induces a proper vertex coloring of $G$ where the vertex $v$ is assigned the color(vertex sum) $w(v)$. The {bf local antimagic chromatic number} $chi_{la}(G)$ is the minimum number of colors taken over all colorings induced by local antimagic labelings of $G$. In this article among others we determine completely the local antimagic chromatic number $chi_{la}(Gcirc overline{K_m})$ for the corona product of a graph $G$ with the null graph $overline{K_m}$ on $mgeq 1$ vertices, when $G$ is a path $P_n$, a cycle $C_n$, and a complete graph $K_n$.
A graph $G$ is $k$-$weighted-list-antimagic$ if for any vertex weighting $omegacolon V(G)tomathbb{R}$ and any list assignment $Lcolon E(G)to2^{mathbb{R}}$ with $|L(e)|geq |E(G)|+k$ there exists an edge labeling $f$ such that $f(e)in L(e)$ for all $ei
We confirm the equitable $Delta$-coloring conjecture for interval graphs and establish the monotonicity of equitable colorability for them. We further obtain results on equitable colorability about square (or Cartesian) and cross (or direct) products of graphs.
Motivated by the conjecture of Hartsfield and Ringel on antimagic labelings of undirected graphs, Hefetz, M{u}tze, and Schwartz initiated the study of antimagic labelings of digraphs in 2010. Very recently, it has been conjectured in [Antimagic orien
Given a graph $G=(V,E)$ and a colouring $f:Emapsto mathbb N$, the induced colour of a vertex $v$ is the sum of the colours at the edges incident with $v$. If all the induced colours of vertices of $G$ are distinct, the colouring is called antimagic.
A $labeling$ of a digraph $D$ with $m$ arcs is a bijection from the set of arcs of $D$ to ${1,2,ldots,m}$. A labeling of $D$ is $antimagic$ if no two vertices in $D$ have the same vertex-sum, where the vertex-sum of a vertex $u in V(D)$ for a labelin