ترغب بنشر مسار تعليمي؟ اضغط هنا

Early formation of carbon monoxide in the Centaurus A supernova SN 2016adj

92   0   0.0 ( 0 )
 نشر من قبل Nye Evans
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. P. K. Banerjee




اسأل ChatGPT حول البحث

We present near-infrared spectroscopy of the NGC 5128 supernova SN 2016adj in the first 2 months following discovery. We report the detection of first overtone carbon monoxide emission at $sim58.2$ d after discovery, one of the earliest detections of CO in an erupting supernova. We model the CO emission to derive the CO mass, temperature and velocity, assuming both pure $^{12}$CO and a composition that includes $^{13}$CO; the case for the latter is the isotopic analyses of meteoritic grains, which suggest that core collapse supernovae can synthesise significant amounts of $^{13}$C. Our models show that, while the CO data are adequately explained by pure $^{12}$CO, they do not preclude the presence of $^{13}$CO, to a limit of $^{12}$C/$^{13}$C $> 3$, the first constraint on the $^{12}$C/$^{13}$C ratio determined from near-infrared observations. We estimate the reddening to the object, and the effective temperature from the energy distribution at outburst. We discuss whether the ejecta of SN 2016adj may be carbon-rich, what the infrared data tell us about the classification of this supernova, and what implications the early formation of CO in supernovae may have for CO formation in supernovae in general.



قيم البحث

اقرأ أيضاً

We report the likely detection of near-infrared 2.29 $mu$m first overtone Carbon Monoxide (CO) emission from the young supernova remnant Cassiopeia A (Cas A). The continuum-subtracted CO filter map reveals CO knots within the ejecta-rich reverse shoc k. We compare the first overtone CO emission with that found in the well-studied supernova, SN 1987A and find $sim$30 times less CO in Cas A. The presence of CO suggests that molecule mixing is small in the SN ejecta and that astrochemical processes and molecule formation may continue at least ~300 years after the initial explosion.
We report spectroscopic and imaging observations of rotational transitions of cold CO and SiO in the ejecta of SN1987A, the first such emission detected in a supernova remnant. In addition to line luminosities for the CO J=1-0, 2-1, 6-5, and 7-6 tran sitions, we present upper limits for all other transitions up to J=13-12, collectively measured from the Atacama Large Millimeter Array (ALMA), the Atacama Pathfinder EXperiment (APEX), and the Herschel Spectral and Photometric Imaging REceiver (SPIRE). Simple models show the lines are emitted from at least 0.01 solar masses of CO at a temperature > 14 K, confined within at most 35% of a spherical volume expanding at ~ 2000 km/s. Moreover, we locate the emission within 1 of the central debris. These observations, along with a partial observation of SiO, confirm the presence of cold molecular gas within supernova remnants and provide insight into the physical conditions and chemical processes in the ejecta. Furthermore, we demonstrate the powerful new window into supernova ejecta offered by submillimeter observations.
We report the detection of carbon monoxide (CO) emission from the young supernova remnant Cassiopeia A (Cas A) at wavelengths corresponding to the fundamental vibrational mode at 4.65 micron. We obtained AKARI Infrared Camera spectra towards 4 positi ons which unambiguously reveal the broad characteristic CO ro-vibrational band profile. The observed positions include unshocked ejecta at the center, indicating that CO molecules form in the ejecta at an early phase. We extracted a dozen spectra across Cas A along the long 1 arcmin slits, and compared these to simple CO emission models in Local Thermodynamic Equilibrium to obtain first-order estimates of the excitation temperatures and CO masses involved. Our observations suggest that significant amounts of carbon may have been locked up in CO since the explosion 330 years ago. Surprisingly, CO has not been efficiently destroyed by reactions with ionized He or the energetic electrons created by the decay of the radiative nuclei. Our CO detection thus implies that less carbon is available to form carbonaceous dust in supernovae than is currently thought and that molecular gas could lock up a significant amount of heavy elements in supernova ejecta.
The origin of dust in the early Universe has been the subject of considerable debate. Core-collapse supernovae (ccSNe), which occur several million years after their massive progenitors form, could be a major source of that dust, as in the local univ erse several ccSNe have been observed to be copious dust producers. Here we report nine near-infrared (0.8 - 2.5 micron) spectra of the Type II-P SN 2017eaw in NGC 6946, spanning the time interval 22 - 205 days after discovery. The specta show the onset of CO formation and continuum emission at wavelengths greater than 2.1 micron from newly-formed hot dust, in addition to numerous lines of hydrogen and metals, which reveal the change in ionization as the density of much of the ejecta decreases. The observed CO masses estimated from an LTE model are typically 10^{-4} Msun during days 124 - 205, but could be an order of magnitude larger if non-LTE conditions are present in the emitting region. The timing of the appearance of CO is remarkably consistent with chemically controlled dust models of Sarangi & Cherchneff.
We present the optical (UBVRI) and ultraviolet (Swift-UVOT) photometry, and optical spectroscopy of Type Ia supernova SN 2017hpa. We study broadband UV+optical light curves and low resolution spectroscopy spanning from $-13.8$ to $+108$~d from the ma ximum light in $B$-band. The photometric analysis indicates that SN 2017hpa is a normal type Ia with $Delta m_{B}(15) = 0.98pm0.16$ mag and $M_{B}=-19.45pm0.15$ mag at a distance modulus of $mu = 34.08pm0.09$ mag. The $(uvw1-uvv)$ colour evolution shows that SN 2017hpa falls in the NUV-blue group. The $(B-V)$ colour at maximum is bluer in comparison to normal type Ia supernovae. Spectroscopic analysis shows that the Si II 6355 absorption feature evolves rapidly with a velocity gradient, $dot{v}=128pm 7$ km s$^{-1}$ d$^{-1}$. The pre-maximum phase spectra show prominent C II 6580 {AA} absorption feature. The C II 6580 {AA} line velocity measured from the observed spectra is lower than the velocity of Si II 6355 {AA}, which could be due to a line of sight effect. The synthetic spectral fits to the pre-maximum spectra using syn++ indicate the presence of a high velocity component in the Si II absorption, in addition to a photospheric component. Fitting the observed spectrum with the spectral synthesis code TARDIS, the mass of unburned C in the ejecta is estimated to be $sim 0.019$~$M_{odot}$. The peak bolometric luminosity is $L^{bol}_{peak} = 1.43times10^{43}$ erg s$^{-1}$. The radiation diffusion model fit to the bolometric light curve indicates $0.61pm0.02$ $M_odot$ of $^{56}$Ni is synthesized in the explosion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا