ﻻ يوجد ملخص باللغة العربية
Twisted and orbifold formulations of lattice ${cal N}=4$ super Yang-Mills theory which possess an exact supersymmetry require a $U(N)=SU(N)otimes U(1)$ gauge group. In the naive continuum limit, the $U(1)$ modes trivially decouple and play no role in the theory. However, at non-zero lattice spacing they couple to the $SU(N)$ modes and can drive instabilities in the lattice theory. For example, it is well known that the lattice $U(1)$ theory undergoes a phase transition at strong coupling to a chirally broken phase. An improved action that suppresses the fluctuations in the $U(1)$ sector was proposed in arXiv:1505.03135 . Here, we explore a more aggressive approach to the problem by adding a term to the action which can entirely suppress the $U(1)$ mode. The penalty is that the new term breaks the $mathcal{Q}$-exact lattice supersymmetry. However, we argue that the term is $1/N^2$ suppressed and the existence of a supersymmetric fixed point in the planar limit ensures that any SUSY-violating terms induced in the action possess couplings that also vanish in this limit. We present numerical results on supersymmetric Ward identities consistent with this conclusion.
We report on a lattice simulation result for four-dimensional {cal N}=1 SU(2) super Yang-Mills theory with the dynamical overlap gluino. We study the spectrum of the overlap Dirac operator at three different gluino masses m=0.2, 0.1 and 0.05 with the
We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these
Non-perturbative investigations of $mathcal N = 4$ supersymmetric Yang--Mills theory formulated on a space-time lattice have advanced rapidly in recent years. Large-scale numerical calculations are currently being carried out based on a construction
We derive a generalised concavity condition for potentials between static sources obtained from Wilson loops coupling both to gauge bosons and a set of scalar fields. It involves the second derivatives with respect to the distance in ordinary space a
We compute the six-particle maximally-helicity-violating (MHV) and next-to-MHV (NMHV) amplitudes in planar maximally supersymmetric Yang-Mills theory through seven loops and six loops, respectively, as an application of the extended Steinmann relatio