ﻻ يوجد ملخص باللغة العربية
We construct nucleonic microscopic optical potentials by combining the Greens function approach with the coupled-cluster method for $rm{^{40}Ca}$ and $rm{^{48}Ca}$. For the computation of the ground-state of $rm{^{40}Ca}$ and $rm{^{48}Ca}$, we use the coupled-cluster method in the singles-and-doubles approximation, while for the A = $pm 1$ nuclei we use particle-attached/removed equation-of-motion method truncated at two-particle-one-hole and one-particle-two-hole excitations, respectively. Our calculations are based on the chiral nucleon-nucleon and three-nucleon interaction $rm{NNLO_{sat}}$, which reproduces the charge radii of $^{40}$Ca and $^{48}$Ca, and the chiral nucleon-nucleon interaction $rm{NNLO_{opt}}$. In all cases considered here, we observe that the overall form of the neutron scattering cross section is reproduced for both interactions, but the imaginary part of the potential, which reflects the loss of flux in the elastic channel, is negligible. The latter points to neglected many-body correlations that would appear beyond the coupled-cluster truncation level considered in this work. We show that, by artificially increasing the parameter $eta$ in the Greens function, practical results can be further improved.
We formulate microscopic optical potentials for nucleon-nucleus scattering from chiral two- and three-nucleon forces. The real and imaginary central terms of the optical potentials are obtained from the nucleon self energy in infinite nuclear matter
We present a reliable double-folding (DF) model for $^{4}$He-nucleus scattering, using the Melbourne $g$-matrix nucleon-nucleon interaction that explains nucleon-nucleus scattering with no adjustable parameter. In the DF model, only the target densit
The differential cross section and the analyzing power are calculated for elastic scattering of $^6$He from a proton target using a microscopic folding optical potential, in which the $^6$He nucleus is described in terms of a $^4$He-core with two add
We construct a microscopic optical potential including breakup effects for elastic scattering of weakly-binding projectiles within the Glauber model, in which a nucleon-nucleus potential is derived by the $g$-matrix folding model. The derived microsc
We compute the isospin-asymmetry dependence of microscopic optical model potentials from realistic chiral two- and three-body interactions over a range of resolution scales $Lambda simeq 400-500$,MeV. We show that at moderate projectile energies, $E_