ترغب بنشر مسار تعليمي؟ اضغط هنا

Modulations of the Cosmic Muon Signal in Ten Years of Borexino Data

90   0   0.0 ( 0 )
 نشر من قبل Dominik Jeschke
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the flux of cosmic muons in the Laboratori Nazionali del Gran Sasso at 3800,m,w.e. to be $(3.432 pm 0.003)cdot 10^{-4},mathrm{{m^{-2}s^{-1}}}$ based on ten years of Borexino data acquired between May 2007 and May 2017. A seasonal modulation with a period of $(366.3 pm 0.6),mathrm{d}$ and a relative amplitude of $(1.36 pm0.04)%$ is observed. The phase is measured to be $(181.7 pm 0.4),mathrm{d}$, corresponding to a maximum at the 1$^mathrm{st}$ of July. Using data inferred from global atmospheric models, we show the muon flux to be positively correlated with the atmospheric temperature and measure the effective temperature coefficient $alpha_mathrm{T} = 0.90 pm 0.02$. The origin of cosmic muons from pion and kaon decays in the atmosphere allows to interpret the effective temperature coefficient as an indirect measurement of the atmospheric kaon-to-pion production ratio $r_{mathrm{K}/pi} = 0.11^{+0.11}_{-0.07}$ for primary energies above $18,mathrm{TeV}$. We find evidence for a long-term modulation of the muon flux with a period of $sim 3000,mathrm{d}$ and a maximum in June 2012 that is not present in the atmospheric temperature data. A possible correlation between this modulation and the solar activity is investigated. The cosmogenic neutron production rate is found to show a seasonal modulation in phase with the cosmic muon flux but with an increased amplitude of $(2.6 pm 0.4)%$.



قيم البحث

اقرأ أيضاً

207 - Davide DAngelo 2011
Borexino is an organic liquid scintillator detector located in the underground Gran Sasso National Laboratory (Italy). It is devoted mainly to the real time spectroscopy of low energy solar neutrinos via the elastic scattering on electrons in the tar get mass. The data taking campaign started in 2007 and led to key measurements of 7}Be and 8B solar neutrinos as well as antineutrinos from the earth (geo-neutrinos) and from nuclear power reactors. Borexino is also a powerful tool for the study of cosmic muons that penetrate the Gran Sasso rock coverage and thereby induced signals such as neutrons and radioactive isotopes which are today of critical importance for upcoming dark matter and neutrino physics experiments. Having reached 4y of continuous data taking we analyze here the muon signal and its possible modulation. The muon flux is measured to be (3.41+-0.01)E-4/m2/s. A modulation of this signal with a yearly period is observed with an amplitude of (1.29+-0.07)% and a phase of (179+-6) d, corresponding to June 28th. Muon rate fluctuations are compared to fluctuations in the atmospheric temperature on a daily base, exploiting the most complete atmospheric data and models available. The distributions are shown to be positively correlated and the effective temperature coefficient is measured to be alpha_T = 0.93 +- 0.04. This result is in good agreement with the expectations of the kaon-inclusive model at the laboratory site and represents an improvement over previous measurements performed at the same depth.
We report an improved geo-neutrino measurement with Borexino from 2056 days of data taking. The present exposure is $(5.5pm0.3)times10^{31}$ proton$times$yr. Assuming a chondritic Th/U mass ratio of 3.9, we obtain $23.7 ^{+6.5}_{-5.7} (stat) ^{+0.9}_ {-0.6} (sys)$ geo-neutrino events. The null observation of geo-neutrinos with Borexino alone has a probability of $3.6 times 10^{-9}$ (5.9$sigma$). A geo-neutrino signal from the mantle is obtained at 98% C.L. The radiogenic heat production for U and Th from the present best-fit result is restricted to the range 23-36 TW, taking into account the uncertainty on the distribution of heat producing elements inside the Earth.
We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by $Delta m^2_{32}=2.72^{+0.19}_{-0.20}times 10^{-3},mathrm{eV}^2$ and $sin^2theta_{23} = 0.53^{+0.09}_{-0.12}$ (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.
The charge ratio ${k equiv mu^+/mu^-}$ for atmospheric muons has been measured using Large Volume Detector (LVD) in the INFN Gran Sasso National Laboratory, Italy (minimal depth is 3000 m w.e.). To reach this depth muons should have the energy at the sea level greater than 1.3 TeV. The muon charge ratio was defined using the number of the decays of stopping positive muons in the LVD iron structure and the decays of positive and negative muons in scintillator. We have obtained the value of the muon charge ratio ${k}$ ${= 1.26 pm 0.04(stat) pm 0.11(sys)}$.
The OPERA experiment discovered muon neutrino into tau neutrino oscillations in appearance mode, detecting tau leptons by means of nuclear emulsion films. The apparatus was also endowed with electronic detectors with tracking capability, such as scin tillator strips and resistive plate chambers. Because of its location, in the underground Gran Sasso laboratory, under 3800 m.w.e., the OPERA detector has also been used as an observatory for TeV muons produced by cosmic rays in the atmosphere. In this paper the measurement of the single muon flux modulation and of its correlation with the seasonal variation of the atmospheric temperature are reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا