ﻻ يوجد ملخص باللغة العربية
A combinatorial approach is used to study the critical behavior of a $q$-state Potts model with a round-the-face interaction. Using this approach it is shown that the model exhibits a first order transition for $q>3$. A second order transition is numerically detected for $q=2$. Based on these findings, it is deduced that for some two-dimensional ferromagnetic Potts models with completely local interaction, there is a changeover in the transition order at a critical integer $q_cleq 3$. This stands in contrast to the standard two-spin interaction Potts model where the maximal integer value for which the transition is continuous is $q_c=4$. A lower bound on the first order critical temperature is additionally derived.
A hybrid Potts model where a random concentration $p$ of the spins assume $q_0$ states and a random concentration $1-p$ of the spins assume $q>q_0$ states is introduced. It is known that when the system is homogeneous, with an integer spin number $q_
We study the stochastic dynamics of infinitely many globally interacting $q$-state units on a ring that is externally driven. While repulsive interactions always lead to uniform occupations, attractive interactions give rise to much richer phenomena:
We consider the problem of inferring a graphical Potts model on a population of variables, with a non-uniform number of Potts colors (symbols) across variables. This inverse Potts problem generally involves the inference of a large number of paramete
We investigate the two-dimensional $q=3$ and 4 Potts models with a variable interaction range by means of Monte Carlo simulations. We locate the phase transitions for several interaction ranges as expressed by the number $z$ of equivalent neighbors.
Phase transition of the two- and three-state quantum Potts models on the Sierpinski pyramid are studied by means of a tensor network framework, the higher-order tensor renormalization group method. Critical values of the transverse magnetic field and