ﻻ يوجد ملخص باللغة العربية
For ordered graphs $G$ and $H$, the ordered Ramsey number $r_<(G,H)$ is the smallest $n$ such that every red/blue edge coloring of the complete graph on vertices ${1,dots,n}$ contains either a blue copy of $G$ or a red copy of $H$, where the embedding must preserve the relative order of vertices. One number of interest, first studied by Conlon, Fox, Lee, and Sudakov, is the off-diagonal ordered Ramsey number $r_<(M, K_3)$, where $M$ is an ordered matching on $n$ vertices. In particular, Conlon et al. asked what asymptotic bounds (in $n$) can be obtained for $max r_<(M, K_3)$, where the maximum is over all ordered matchings $M$ on $n$ vertices. The best-known upper bound is $O(n^2/log n)$, whereas the best-known lower bound is $Omega((n/log n)^{4/3})$, and Conlon et al. hypothesize that $r_<(M, K_3) = O(n^{2-epsilon})$ for every ordered matching $M$. We resolve two special cases of this conjecture. We show that the off-diagonal ordered Ramsey numbers for matchings in which edges do not cross are nearly linear. We also prove a truly sub-quadratic upper bound for random matchings with interval chromatic number $2$.
We determine the Ramsey number of a connected clique matching. That is, we show that if $G$ is a $2$-edge-coloured complete graph on $(r^2 - r - 1)n - r + 1$ vertices, then there is a monochromatic connected subgraph containing $n$ disjoint copies of
Consider a two-player game between players Builder and Painter. Painter begins the game by picking a coloring of the edges of $K_n$, which is hidden from Builder. In each round, Builder points to an edge and Painter reveals its color. Builders goal i
A path-matching of order $p$ is a vertex disjoint union of nontrivial paths spanning $p$ vertices. Burr and Roberts, and Faudree and Schelp determined the 2-color Ramsey number of path-matchings. In this paper we study the multicolor Ramsey number of
In this paper, we consider a variant of Ramsey numbers which we call complementary Ramsey numbers $bar{R}(m,t,s)$. We first establish their connections to pairs of Ramsey $(s,t)$-graphs. Using the classification of Ramsey $(s,t)$-graphs for small $s,
We prove that the number of integers in the interval [0,x] that are non-trivial Ramsey numbers r(k,n) (3 <= k <= n) has order of magnitude (x ln x)**(1/2).