ﻻ يوجد ملخص باللغة العربية
This paper presents a field-programmable gate array (FPGA) design of a segmentation algorithm based on convolutional neural network (CNN) that can process light detection and ranging (LiDAR) data in real-time. For autonomous vehicles, drivable region segmentation is an essential step that sets up the static constraints for planning tasks. Traditional drivable region segmentation algorithms are mostly developed on camera data, so their performance is susceptible to the light conditions and the qualities of road markings. LiDAR sensors can obtain the 3D geometry information of the vehicle surroundings with high precision. However, it is a computational challenge to process a large amount of LiDAR data in real-time. In this paper, a convolutional neural network model is proposed and trained to perform semantic segmentation using data from the LiDAR sensor. An efficient hardware architecture is proposed and implemented on an FPGA that can process each LiDAR scan in 17.59 ms, which is much faster than the previous works. Evaluated using Ford and KITTI road detection benchmarks, the proposed solution achieves both high accuracy in performance and real-time processing in speed.
Simultaneous Localization and Mapping (SLAM) is a critical task for autonomous navigation. However, due to the computational complexity of SLAM algorithms, it is very difficult to achieve real-time implementation on low-power platforms.We propose an
Small animal Positron Emission Tomography (PET) is dedicated to small animal imaging. Animals used in experiments, such as rats and monkeys, are often much smaller than human bodies, which requires higher position and energy precision of the PET imag
Obtaining highly accurate depth from stereo images in real time has many applications across computer vision and robotics, but in some contexts, upper bounds on power consumption constrain the feasible hardware to embedded platforms such as FPGAs. Wh
A real-time ranging lidar with 0.1 Mega Hertz update rate and few-micrometer resolution incorporating dispersive Fourier transformation and instantaneous microwave frequency measurement is proposed and demonstrated. As time-stretched femtosecond lase
Modern mobile neural networks with a reduced number of weights and parameters do a good job with image classification tasks, but even they may be too complex to be implemented in an FPGA for video processing tasks. The article proposes neural network