We investigate neutron propagation in a middle layer of a planar waveguide which is a tri-layer thin film. A narrow divergent microbeam emitted from the end face of the film is registered. The neutron channeling length is experimentally measured as a function of the guiding channel width. Experimental results are compared with calculations.
Results of experimental investigations of a neutron resonances width in planar waveguides using the time-of-flight reflectometer REMUR of the IBR-2 pulsed reactor are reported and comparison with theoretical calculations is presented. The intensity o
f the neutron microbeam emitted from the waveguide edge was registered as a function of the neutron wavelength and the incident beam angular divergence. The possible applications of this method for the investigations of layered nanostructures are discussed.
The usage of a Crystalline Undulator (CU) has been identified as a promising solution for generating powerful and monochromatic $gamma$-rays. A CU was fabricated at SSL through the grooving method, i.e., by the manufacturing of a series of periodical
grooves on the major surfaces of a crystal. The CU was extensively characterized both morphologically via optical interferometry at SSL and structurally via X-ray diffraction at ESRF. Then, it was finally tested for channeling with a 400 GeV/c proton beam at CERN. The experimental results were compared to Monte Carlo simulations. Evidence of planar channeling in the CU was firmly observed. Finally, the emission spectrum of the positron beam interacting with the CU was simulated for possible usage in currently existing facilities.
We investigate nongeminate recombination in organic solar cells based on copper phthalocyanine (CuPc) and C$_{60}$. Two device architectures, the planar heterojunction (PHJ) and the bulk heterojunction (BHJ), are directly compared in view of differen
ces in charge carrier decay dynamics. We apply a combination of transient photovoltage (TPV) experiments, yielding the small perturbation charge carrier lifetime, and charge extraction measurements, providing the charge carrier density. In organic solar cells, charge photogeneration and recombination primarily occur at the donor--acceptor heterointerface. Whereas the BHJ can often be approximated by an effective medium due to rather small scale phase separation, the PHJ has a well defined two-dimensional heterointerface. To study recombination dynamics in PHJ devices most relevant is the charge accumulation at this interface. As from extraction techniques only the spatially averaged carrier concentration can be determined, we derive the charge carrier density at the interface $n_{int}$ from the open circuit voltage. Comparing the experimental results with macroscopic device simulation we discuss the differences of recombination and charge carrier densities in CuPc:C$_{60}$ PHJ and BHJ devices with respect to the device performance. The open circuit voltage of BHJ is larger than for PHJ at low light intensities, but at 0.3 sun the situation is reversed: here, the PHJ can finally take advantage of its generally longer charge carrier lifetimes, as the active recombination region is smaller.
Approximate solutions of the Dirac equation are found for ultrarelativistic particles moving in a periodic potential, which depends only on one coordinate, transverse to the largest component of the momentum of the incoming particle. As an example we
employ these solutions to calculate the radiation emission of positrons and electrons trapped in the planar potential found between the (110) planes in Silicon. This allows us to compare with the semi-classical method of Baier, Katkov and Strakhovenko, which includes the effect of spin and photon recoil, but neglects the quantization of the transverse motion. For high-energy electrons, the high-energy part of the angularly integrated photon energy spectrum calculated with the found wave functions differs from the corresponding one calculated with the semi-classical method. However, for lower particle energies it is found that the angularly integrated emission energy spectra obtained via the semi-classical method is in fairly good agreement with the full quantum calculation except that the positions of the harmonic peaks in photon energy and the photon emission angles are shifted.
Plasmonic metasurfaces have spawned the field of flat optics using nanostructured planar metallic or dielectric surfaces that can replace bulky optical elements and enhance the capabilities of traditional far-field optics. Furthermore, the potential
of flat optics can go far beyond far-field modulation, and can be exploited for functionality in the near-field itself. Here, we design metasurfaces based on aperiodic arrays of plasmonic Au nanostructures for tailoring the optical near-field in the visible and near-infrared spectral range. The basic element of the arrays is a rhomboid that is modulated in size, orientation and position to achieve the desired functionality of the micron-size metasurface structure. Using two-photon-photoluminescence as a tool to probethe near-field profiles in the plane of the metasurfaces, we demonstrate the molding of light into different near-field intensity patterns and active pattern control via the far-field illumination. Finite element method simulations reveal that the near-field modulation occurs via a combination of the plasmonic resonances of the rhomboids and field enhancement in the nanoscale gaps in between the elements. This approach enables optical elements that can switch the near-field distribution across the metasurface via wavelength and polarization of the incident far-field light, and provides pathways for light matter interaction in integrated devices.