ﻻ يوجد ملخص باللغة العربية
We present the second major release of data from the SAMI Galaxy Survey. Data Release Two includes data for 1559 galaxies, about 50% of the full survey. Galaxies included have a redshift range 0.004 < z < 0.113 and a large stellar mass range 7.5 < log (M_star/M_sun) < 11.6. The core data for each galaxy consist of two primary spectral cubes covering the blue and red optical wavelength ranges. For each primary cube we also provide three spatially binned spectral cubes and a set of standardised aperture spectra. For each core data product we provide a set of value-added data products. This includes all emission line value-added products from Data Release One, expanded to the larger sample. In addition we include stellar kinematic and stellar population value-added products derived from absorption line measurements. The data are provided online through Australian Astronomical Optics Data Central. We illustrate the potential of this release by presenting the distribution of ~350,000 stellar velocity dispersion measurements from individual spaxels as a function of R/R_e, divided in four galaxy mass bins. In the highest stellar mass bin (log (M_star/M_sun)>11), the velocity dispersion strongly increases towards the centre, whereas below log (M_star/M_sun)<10 we find no evidence for a clear increase in the central velocity dispersion. This suggests a transition mass around log (M_star/M_sun) ~10 for galaxies with or without a dispersion-dominated bulge.
We present the first major release of data from the SAMI Galaxy Survey. This data release focuses on the emission-line physics of galaxies. Data Release One includes data for 772 galaxies, about 20% of the full survey. Galaxies included have the reds
We present the Early Data Release of the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. The SAMI Galaxy Survey is an ongoing integral field spectroscopic survey of ~3400 low-redshift (z<0.12) galaxies, covering galaxies in
We present the source associations, cross-identifications, and multi-wavelength properties of the faint radio source population detected in the deep tier of the LOFAR Two Metre Sky Survey (LoTSS): the LoTSS Deep Fields. The first LoTSS Deep Fields da
We have entered a new era where integral-field spectroscopic surveys of galaxies are sufficiently large to adequately sample large-scale structure over a cosmologically significant volume. This was the primary design goal of the SAMI Galaxy Survey. H
The LOFAR Two-metre Sky Survey (LoTSS) is an ongoing sensitive, high-resolution 120-168 MHz survey of the Northern sky with diverse and ambitious science goals. Many of the scientific objectives of LoTSS rely upon, or are enhanced by, the association