ترغب بنشر مسار تعليمي؟ اضغط هنا

Reactor Neutrino Spectral Distortions Play Little Role in Mass Hierarchy Experiments

74   0   0.0 ( 0 )
 نشر من قبل Daine Danielson
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف D. L. Danielson




اسأل ChatGPT حول البحث

The Coulomb enhancement of low energy electrons in nuclear beta decay generates sharp cutoffs in the accompanying antineutrino spectrum at the beta decay endpoint energies. It has been conjectured that these features will interfere with measuring the effect of a neutrino mass hierarchy on an oscillated nuclear reactor antineutrino spectrum. These sawtooth-like features will appear in detailed reactor antineutrino spectra, with characteristic energy scales similar to the oscillation period critical to neutrino mass hierarchy determination near a 53 km baseline. However, these sawtooth-like distortions are found to contribute at a magnitude of only a few percent relative to the mass hierarchy-dependent oscillation pattern in Fourier space. In the Fourier cosine and sine transforms, the features that encode a neutrino mass hierarchy dominate by over sixteen (thirty-three) times in prominence to the maximal contribution of the sawtooth-like distortions from the detailed energy spectrum, given $3.2%/sqrt{E_mathrm{vis.}/mathrm{MeV}}$ (perfect) detector energy resolution. The effect of these distortions is shown to be negligible even when the uncertainties in the reactor spectrum, oscillation parameters, and counting statistics are considered. This result is shown to hold even when the opposite hierarchy oscillation patterns are nearly degenerate in energy space, if energy response nonlinearities are controlled to below 0.5%. Therefore with accurate knowledge of detector energy response, the sawtooth-like features in reactor antineutrino spectra will not significantly impede neutrino mass hierarchy measurements using reactor antineutrinos.



قيم البحث

اقرأ أيضاً

Medium-baseline reactor neutrino oscillation experiments (MBRO) have been proposed to determine the neutrino mass hierarchy (MH) and to make precise measurements of the neutrino oscillation parameters. With sufficient statistics, better than ~3%/sqrt {E} energy resolution and well understood energy non-linearity, MH can be determined by analyzing oscillation signals driven by the atmospheric mass-squared difference in the survival spectrum of reactor antineutrinos. With such high performance MBRO detectors, oscillation parameters, such as sin^22theta_{12}, Delta m^2_{21}, and Delta m^2_{32}, can be measured to sub-percent level, which enables a future test of the PMNS matrix unitarity to ~1% level and helps the forthcoming neutrinoless double beta decay experiments to constrain the allowed <m_{beta beta}> values. Combined with results from the next generation long-baseline beam neutrino and atmospheric neutrino oscillation experiments, the MH determination sensitivity can reach higher levels. In addition to the neutrino oscillation physics, MBRO detectors can also be utilized to study geoneutrinos, astrophysical neutrinos and proton decay. We propose to start a U.S. R&D program to identify, quantify and fulfill the key challenges essential for the success of MBRO experiments.
The relatively large measured value of $theta_{13}$ has opened up the possibility of determining the neutrino mass hierarchy through earth matter effects. Amongst the current accelerator-based experiments only NOvA has a long enough baseline to obser ve earth matter effects. However, NOvA is plagued with uncertainty on the knowledge of the true value of $delta_{CP}$, and this could drastically reduce its sensitivity to the neutrino mass hierarchy. The earth matter effect on atmospheric neutrinos on the other hand is almost independent of $delta_{CP}$. The 50 kton magnetized Iron CALorimeter at the India-based Neutrino Observatory (ICAL@INO) will be observing atmospheric neutrinos. The charge identification capability of this detector gives it an edge over others for mass hierarchy determination through observation of earth matter effects. We study in detail the neutrino mass hierarchy sensitivity of the data from this experiment simulated using the Nuance based generator developed for ICAL@INO and folded with the detector resolutions and efficiencies obtained by the INO collaboration from a full Geant4-based detector simulation. The data from ICAL@INO is then combined with simulated data from T2K, NOvA, Double Chooz, RENO and Daya Bay experiments and a combined sensitivity study to the mass hierarchy is performed. With 10 years of ICAL@INO data combined with T2K, NOvA and reactor data, one could get about $2.3sigma-5.7sigma$ discovery of the neutrino mass hierarchy, depending on the true value of $sin^2theta_{23}$ [0.4 -- 0.6], $sin^22theta_{13}$ [0.08 -- 0.12] and $delta_{CP}$ [0 -- 2$pi$].
The spectral shape of reactor antineutrinos measured in recent experiments shows anomalies in comparison to neutrino reference spectra. New precision measurements of the reactor neutrino spectra as well as more complete input in nuclear data bases ar e needed to resolve the observed discrepancies between models and experimental results. This article proposes the combination of experiments at reactors which are highly enriched in ${}^{235}$U with commercial reactors with typically lower enrichment to gain new insights into the origin of the anomalous neutrino spectrum. The presented method clarifies, if the spectral anomaly is either solely or not at all related to the predicted ${}^{235}$U spectrum. Considering the current improvements of the energy scale uncertainty of present-day experiments, a significance of three sigma and above can be reached. As an example, we discuss the option of a direct comparison of the measured shape in the currently running Double Chooz near detector and the upcoming Stereo experiment. A quantitative feasibility study emphasizes that a precise understanding of the energy scale systematics is a crucial prerequisite in recent and next generation experiments investigating the spectral anomaly.
Determination of the neutrino mass hierarchy using a reactor neutrino experiment at $sim$60 km is analyzed. Such a measurement is challenging due to the finite detector resolution, the absolute energy scale calibration, as well as the degeneracies ca used by current experimental uncertainty of $|Delta m^2_{32}|$. The standard $chi^2$ method is compared with a proposed Fourier transformation method. In addition, we show that for such a measurement to succeed, one must understand the non-linearity of the detector energy scale at the level of a few tenths of percent.
Proposed medium-baseline reactor neutrino experiments offer unprecedented opportunities to probe, at the same time, the mass-mixing parameters which govern $ u_e$ oscillations both at short wavelength (delta m^2 and theta_{12}) and at long wavelength (Delta m^2 and theta_{13}), as well as their tiny interference effects related to the mass hierarchy (i.e., the relative sign of Delta m^2 and delta m^2). In order to take full advantage of these opportunities, precision calculations and refined statistical analyses of event spectra are required. In such a context, we revisit several input ingredients, including: nucleon recoil in inverse beta decay and its impact on energy reconstruction and resolution, hierarchy and matter effects in the oscillation probability, spread of reactor distances, irreducible backgrounds from geoneutrinos and from far reactors, and degeneracies between energy scale and spectrum shape uncertainties. We also introduce a continuous parameter alpha, which interpolates smoothly between normal hierarchy (alpha=+1) and inverted hierarchy (alpha=-1). The determination of the hierarchy is then transformed from a test of hypothesis to a parameter estimation, with a sensitivity given by the distance of the true case (either alpha=+1 or alpha=-1) from the undecidable case (alpha=0). Numerical experiments are performed for the specific set up envisaged for the JUNO project, assuming a realistic sample of O(10^5) reactor events. We find a typical sensitivity of ~2 sigma to the hierarchy in JUNO, which, however, can be challenged by energy scale and spectrum shape systematics, whose possible conspiracy effects are investigated. The prospective accuracy reachable for the other mass-mixing parameters is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا